ارزیابی تناسب اراضی استان خراسان رضوی برای کشت سیاه دانه (.Nigella sativa L) به روش ترکیبی تحلیل عاملی پارامتریک
محورهای موضوعی : پژوهش های به زراعیامیر دوستداری 1 , علی افتخاری 2 , علی باقرزاده چهارجویی 3 , سید امیر عباس موسوی 4 , مرتضی مبلغی 5
1 - دانشجوی دکتری، گروه آگروتکنولوژی، واحد چالوس، دانشگاه آزاد اسلامی، چالوس، ایران
2 - استادیار، گروه کشاورزی، واحد چالوس، دانشگاه آزاد اسلامی، چالوس، ایران
3 - دانشیار، گروه کشاورزی، واحد مشهد، دانشگاه آزاد اسلامی، مشهد، ایران
4 - استادیار، گروه کشاورزی، واحد چالوس، دانشگاه آزاد اسلامی، چالوس، ایران
5 - استادیار، گروه کشاورزی، واحد چالوس، دانشگاه آزاد اسلامی، چالوس، ایران
کلید واژه: ارزیابی تناسب زمین, تحلیل مولفه های اصلی, روش تحلیل عاملی پارامتریک, سامانه اطلاعات جغرافیایی (GIS), سیاهدانه ,
چکیده مقاله :
شناسایی بهترین مناطق با هدف فعالیت مولد کشاورزی در کنار حفاظت کامل منابع آب و خاک و از سوی دیگر حفظ سلامت محصولات تولیدی و تامین اقتصادی تولید کنندگان صورت می گیرد و اهمیت دارد. این مطالعه با هدف ارزیابی تناسب زمین برای کشت گیاه دارویی سیاهدانه در 189220 نقطه در استان خراسان رضوی در شمال شرق ایران در سال 1403 انجام شد. در این مطالعه، از روش تحلیل عاملی (FA) با استفاده از تحلیل مؤلفههای اصلی (PCA) به عنوان یک روش آماری چندمتغیره برای ارزیابی تناسب زمین برای کشت سیاهدانه در منطقه مورد مطالعه استفاده شد. برای این منظور، 17 فاکتور خاک و اقلیم منطقه استخراج شده پردازش شدند که منجر به پنج عامل شد که بیش از 78% از واریانس کل را توضیح میدهند. نتایج مطالعه نشان داد که پنج عامل اصلی بیش از 78% از واریانس کل را با مقادیر ویژه بزرگتر از 1 توضیح میدهند. واریانس توضیحدادهشده این عوامل پس از چرخش واریماکس به ترتیب از 021/26% برای عامل اول تا 111/7% برای عامل پنجم متغیر بود. همچنین، هر عامل بارگیریهای متفاوت برای هر یک از متغیرها نشان داده شده است. نقشه تناسب اراضی استان نشان داد که 96/0% (95/1127 کیلومتر مربع) در بخشهایی از شمال استان برای کشت گیاه سیاه دانه کاملا مناسب، 43/92% (10/108851 کیلومتر مربع) شامل بخشهای عمده ای از شمال، مرکز و بخشهایی از جنوب استان تناسب متوسط و 61/6% (95/7789 کیلومتر مربع) در بخش غربی مرکز و جنوب استان برای تولید سیاه دانه نامناسب می باشد. مهمترین عوامل محدودکننده برای کشت سیاه دانه در استان خراسان رضوی، اجزای اقلیمی و کربن آلی خاک بودند.
The identification of optimal zones for productive agricultural activities must simultaneously achieve three critical objectives: comprehensive conservation of water and soil resources, maintenance of crop health standards, and economic viability for producers. This study, conducted in 2024, evaluated land suitability for cultivating the medicinal plant Nigella sativa L. (black cumin) across 189,220 georeferenced points in Razavi Khorasan Province, northeastern Iran. In this study, factor analysis (FA) using principal component analysis (PCA) was employed as a multivariate statistical method to assess land suitability for black cumin cultivation in the study region. For this purpose, 17 soil and climatic factors were extracted and processed, resulting in five factors that explained over 78% of the total variance. The findings revealed that five principal factors with eigenvalues greater than 1 accounted for more than 78% of the total variance. The explained variance of these factors after varimax rotation ranged from 26.021% for the first factor to 7.111% for the fifth factor. Additionally, each factor exhibited different loadings for the variables. The land suitability map of the province indicated that 0.96% (1,127.95 km²) of the northern regions were highly suitable for black cumin cultivation, 92.43% (108,851.10 km²), covering large parts of the north, center, and some southern areas, were moderately suitable, and 6.61% (7,789.95 km²) in the western-central and southern parts were unsuitable for black cumin production. The most significant limiting factors for black cumin cultivation in Razavi Khorasan Province were climatic components and soil organic carbon.
Abdelkader, M. and A. Delali. 2012. Support system based on GIS and weighted sum method for drawing up of land suitability map for agriculture. Application to durum wheat cultivation in the area of Mleta (Algeria). Spanish Journal of Agricultural Research, 10(1): 34-43. https://doi.org/10.5424/sjar/2012101-293-11
Bagherzadeh, A., A. Gholizadeh, and F. Alizadeh Motaghi. 2021. The feasibility of ash and spruce forest plantations in the Northeast of Iran. Environmental Resources Research, 9(1): 1-12.
Ball, A. and D. De la Rosa. 2006. Modeling possibilities for the assessment of soil systems. In Biological approaches to sustainable soil systems (pp. 683-692). Taylor & Francis. https://doi.org/10.1201/9781420017113.ch48.
Bartzokas, A. and D.A. Metaxas. 1995. Factor analysis of some climatological elements in Athens, 1931–1992: covariability and climatic change. Theoretical and applied climatology, 52: 195-205. https://doi.org/10.1007/BF00864043
Bukantis, A. 2002. Application of factor analysis for quantification of climate-forming processes in the eastern part of the Baltic Sea region. Climate Research, 20(2): 135-140.
https://doi.org/10.3354/cr020135
FAO. 1976. A framework for land evaluation: Soils Bulletin 32, Food and Agriculture Organization of the United Nations, Rome, Italy.
FAO.1983. Guidelines: Land evaluation for rainfed agriculture. FAO Soils Bulletin. No. 52, Rome.
FAO. 1984. Land evaluation for forestry, forestry paper 48: Food and Agriculture Organization of the United Nations, Rome, Italy.
FAO, 1985. Guidelines: Land evaluation for irrigated agriculture. FAO Soils Bulletin, No. 55, Rome.
Ghane Ezabadi, N., S. Azhdar, and A.A. Jamali. 2021. Analysis of dust changes using satellite images in Giovanni NASA and Sentinel in Google Earth Engine in western Iran. Journal of Nature and Spatial Sciences (JONASS), 1(1): 17-26. https://doi.org/10.30495/jonass.2021.680327.
Gorsuch, R.L. 1983. Factor Analysis, 2nd edn Lawrence Erlbaum Associates. Hillsdale, NJ.
He, S., D. Wang, Y. Li, P. Zhao, H. Lan, W. Chen, ... and X. Chen. 2021. Social-ecological system resilience of debris flow alluvial fans in the Awang basin, China. Journal of Environmental Management, 286, 112230. https://doi.org/10.1016/j.jenvman.2021.112230.
Held, M., A. Imeson, and L. Montanarella. 2003. Economic Interests and Benefits of Sustainable Use of Soils and Land Management. Joint Res. Centre Press, Ispra, Italy.
Jolliffe, I. 2022. A 50-year personal journey through time with principal component analysis. Journal of Multivariate Analysis, 188, 104820. https://doi.org/10.1016/j.jmva.2021.104820.
Loehlin, J. C. 1998. Latent Variable Models. Lawrence Erlbaum, Hillsdale, New Jersey.
Mansouri Daneshvar, M.R., A. Bagherzadeh, and B. Alijani. 2013. Application of multivariate approach in agrometeorological suitability zonation at northeast semiarid plains of Iran. Theoretical and applied climatology, 114, 139-152. https://doi.org/10.1007/s00704-012-0827-3.
Manton, M.G., P. Angelstam, andG. Mikusinski. 2005. Modelling habitat suitability for deciduous forest focal species. A sensitivity analysis using different satellite land cover data. Landscape Ecology, 20: 827-839. https://doi.org/10.1007/s10980-005-3703-z.
Masoumi, H., A.A. Jamali, and M. Khabazi. 2014. Investigation of role of slope, aspect and geological formations of landslide occurrence using statistical methods and GIS in some watersheds in Chahar Mahal and Bakhtiari Province. J.Appl. Environ. Biol. Sci, 4(9): 121-129.
McBoyle, G.R. 1973. Climate classification of Australia by computer. In: McBoyle GR (ed) Climate in review. HoughtonMifflin, Boston, pp 110–118.
Murray, A.T. 1999. Spatial analysis using clustering methods: Evaluating central point and median approaches. Journal of Geographical Systems, 1(4): 367-383. https://doi.org/10.1007/s101090050019.
Oleszczuk, P. 2007. The evaluation of sewage sludge and compost toxicity to Heterocypris incongruens in relation to inorganic and organic contaminants content. Environmental Toxicology: An International Journal, 22(6): 587-596. https://doi.org/10.1002/tox.20282.
Olivas, G.U.E., L.J.R. Valdez, A. Aldrete, G.M.D. Gonzalez, and C.G. Vera. 2007. Suitable areas for establishing maguey cenizo plantations: definition through multicriteria analysis and GIS. Revista fitotecnia mexicana, 30: 411-419. https://doi.org/10.35196/rfm.2007.4.411
Ouyang, Y. 2005. Application of principal component and factor analysis to evaluate surface water quality monitoring network. Water Res, 39:2621-2635. https://doi.org/10.1016/j.watres.2005.04.024
Paschalidou, A. K., Kassomenos, P.A. and A. Bartzokas. 2009. A comparative study on various statistical techniques predicting ozone concentrations: implications to environmental management. Environmental monitoring and assessment, 148: 277-289. https://doi.org/10.1007/s10661-008-0158-0
Rossiter, D.G. 1996. A theoretical framework for land evaluation. Geoderma, 72(3-4): 165-190.
https://doi.org/10.1016/0016-7061(96)00031-6
Russell, J.S. and A.W. Moore. 1976. Classification of climate by pattern analysis with Australasian and southern African data as an example. Agricultural Meteorology, 16(1): 45-70. https://doi.org/10.1016/0002-1571(76)90068-6.
Steiner, D. 1965. Multivariate Statistical Approach to Climatic Regionalization and Classification. EJ Brill.
Sys, C., E. Van Ranst, and I.J. Debaveye. 1991. Land evaluation. Part I: Principles In Land Evaluation and Crop Production Calculations. General Administration for Development Cooperation, Agricultural publication-No. 7, Brussels-Belgium, 274
Sys, C., E. Van Ranst, J. Debaveye, and F. Beernaert. 1993. Land Evaluation. Part III: crop requirements. Agricultural Publications n° 7, GADC, Brussels, Belgium, 1993, 191 p.Wilks, D. S. (2011). Statistical methods in the atmospheric sciences (Vol. 100). Academic press.
Yussouf, N., D.J. Stensrud, and S. Lakshmivarahan. 2004. Cluster analysis of multimodel ensemble data over New England. Monthly weather review, 132(10): 2452-2462. https://doi.org/10.1175/1520- 0493