بررسي اثر ليزر هليوم نئون و Nd:YAG بر سودوموناس آئروژينوزای مقاوم به آنتي بيوتيك جدا شده از عفونت های سوختگي
محورهای موضوعی : میکروبیولوژیکتایون برهانی 1 , محمد جواد ترکمنی 2 , مرجان جهانگیری 3
1 - گروه زیستشناسی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران ، ایران
2 - گروه مهندسی انرژی و فیزیک، دانشگاه صنعتی امیرکبیر( پلی تکنیک تهران)، تهران، ایران
3 - گروه زیستشناسی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران ، ایران
کلید واژه: سودوموناس آئروژینوزا, مقاومت آنتی بیوتیکی, عفونت سوختگی, لیزرهلیوم-نئون, لیزرNd-YAG,
چکیده مقاله :
مقدمه: عفونت هاي سوختگی ناشی از سودوموناس آئروژینوزای مقاوم به آنتي بيوتيك، مشكلی بحراني است كه سبب محدوديت در درمان آن شده و محققین را درصدد ايجاد روش هاي جايگزين ازجمله کاربرد ليزر کرده است. هدف از انجام اين پژوهش، بررسي اثر ليزرهاي هليوم نئون و Nd:YAG بر روي جدایه های سودوموناس آئروژینوزا مقاوم به آنتي بيوتيك از بيماران مبتلا به عفونت سوختگي ميباشد.
مواد و روش ها: باکتری های جدا شده از بیماران سوختگی بیمارستان سوانح سوختگی مطهری تهران تهیه گردید. پس از انجام تست های بیوشیمیایی، PCR و تست حساسيت آنتي بيوتيكي، جدایه ها بعنوان سودوموناس آئروژینوزای مقاوم به آنتی بیوتیک تأیید گردیدند. پس از تعیین رقت مناسب از باکتری برای بکارگیری در روش شمارش کلنی، جدایه ها در رقت تعیین شده تحت تاثیر لیزرهای هلیوم نئون با طول موج 623nm و لیزر Nd-YAG با طول موج 1064nm به صورت جداگانه و همچنین بصورت همزمان در فواصل زمانی 1,2,3 دقیقه قرار گرفتند.
یافته ها: نتایج شمارش کلنی نشان دهنده کاهش تعداد باکتری ها بعد از تابش لیزر خصوصا با افزایش زمان بود. لیزر Nd-YAG تاثیر بیشتری را نسبت به لیزر هلیوم-نئون نشان داد. همچنین تاثیر دو لیزر بصورت همزمان بیشتر از تاثیر آنها بصورت جداگانه بود.
نتیجه گیری: استفاده از لیزرهای مذکور و ایجاد شرایط بهینه برای پرتودهی می تواند بر کاهش سودوموناس آئروجینوزای مقاوم به آنتی بیوتیک ناشی از عفونت های سوختگی مؤثر باشد و پس از انجام تست های تکمیلی، می تواند به عنوان یک راه درمانی جایگزین برای درمان درنظر گرفته شود.
Introduction: Burn wound infections caused by antibiotic-resistant Pseudomonas aeruginosa represent a critical clinical problem that has limited therapeutic options and prompted researchers to explore alternative approaches, including the use of lasers. The aim of this study was to investigate the effects of helium–neon (He–Ne) and Nd:YAG lasers on antibiotic-resistant Pseudomonas aeruginosa isolates obtained from patients with burn wound infections.
Materials and Methods: Bacterial isolates were collected from burn patients admitted to Motahari Burn and Trauma Hospital, Tehran. Following biochemical tests, PCR assays, and antibiotic susceptibility testing, the isolates were confirmed as antibiotic-resistant Pseudomonas aeruginosa. After determining the appropriate bacterial dilution for the colony-counting method, the isolates at the selected dilution were exposed separately and simultaneously to a helium–neon laser (wavelength 623 nm) and an Nd:YAG laser (wavelength 1064 nm) for exposure times of 1, 2, and 3 minutes.
Results: Colony-counting results demonstrated a reduction in bacterial numbers following laser irradiation, particularly with increasing exposure time. The Nd:YAG laser exhibited a greater inhibitory effect compared with the helium–neon laser. Moreover, the simultaneous application of both lasers produced a stronger effect than their individual use.
Conclusion: The application of these lasers, under optimized irradiation conditions, may be effective in reducing antibiotic-resistant Pseudomonas aeruginosa associated with burn wound infections. After further confirmatory studies, this approach could be considered as an alternative therapeutic strategy for treatment.
1. Vázquez-López R, Solano-Gálvez SG, Juárez Vignon-Whaley JJ, Abello Vaamonde JA, Padró Alonzo LA, Rivera Reséndiz A, et al. Acinetobacter baumannii resistance: a real challenge for clinicians. Antibiotics. 2020;9(4):205. doi: 10.3390/antibiotics9040205.
2. Farazandeh A, Noorbakhsh F, Honarmand Jahromi S. Effect of silver nanoparticles on surface hydrophobicity and biofilm formation in Staphylococcus aureus, Acinetobacter baumannii, Pseudomonas aeruginosa and Escherichia coli. Iranian Journal of Biological Sciences. 2021;16(1):17-31.
3. Shahcheraghi F, Feizabadi MM, Yamin V, Abiri R, Abedian Z. Serovar determination, drug resistance patterns and plasmid profiles of Pseudomonas aeruginosa isolated from burn patients at two hospitals of Tehran (IRAN). Burns. 2003;29(6):547-51. doi: 10.1016/s0305-4179(03)00142-6.
4. Azimi L, Motevallian A, Ebrahimzadeh Namvar A, Asghari B, Lari AR. Nosocomial infections in burned patients in motahari hospital, tehran, iran. Dermatology research and practice. 2011;2011(1):436952. doi: 10.1155/2011/436952.
5. Ghadiri K, Ghasemi T, Heidari M, Najafi F, Karamimatin R. Epidemiology of hospital death related to burn in Kermanshah, Iran during 2004-2009. Journal NI. 2014;1(1).
6. Adabi M, Talebi TM, Arbabi L, Afshar M, Fathizadeh S, Minaeian S, et al. Determination of antibiotic resistance pattern of Pseudomonas aeruginosa strains isolated from patients with burn wounds. Journal of Ardabil University of Medical Sciences. 2015;15(1):66-74.
7. Cho G, Kwon J, Soh SM, Jang H, Mitchell RJ. Sensitivity of predatory bacteria to different surfactants and their application to check bacterial predation. Applied Microbiology and Biotechnology. 2019;103(19):8169-78. doi: 10.1007/s00253-019-10069-w.
8. Moazamian E, Rafati AR, Fardin M. Evaluation of Bacteriovorus stalpii Predator on the Healing of Pseudomonas aeruginosa-infected Burn Wounds in Rats. Journal Of Animal Physiology and Development. 2021;14(4):35-45.
9. Mahdavi Ourtakand M, Honarmand Jahromi S, Resalati Z. Biofilm Formation and Determination of Antimicrobial Resistance Pattern in Pseudomonas aeruginosa Clinical Isolates. Iranian Journal of Biological Sciences. 2018;12(4):23-9.
10. Livermore DM. Current epidemiology and growing resistance of gram-negative pathogens. The Korean journal of internal medicine. 2012;27(2):128. doi: 10.3904/kjim.2012.27.2.128.
11. Nakhjavani A. Prevalence of extended spectrum beta lactamases among strains of Pseudomonas aeruginosa isolated from burn patients. Tehran University of Medical Sciences Journal. 2008;66(5):333-7.
12. Prasad PN. Introduction to biophotonics. Hoboken: John Wiley & Sons; 2004.
13. Azizi A, Shohrati P, Goudarzi M, Lawaf S, Rahimi A. Comparison of the effect of photodynamic therapy with curcumin and methylene Blue on streptococcus mutans bacterial colonies. Photodiagnosis and photodynamic therapy. 2019;27:203-9. doi: 10.1016/j.pdpdt.2019.06.002.
14. Machado RS, Viana S, Sbruzzi G. Low-level laser therapy in the treatment of pressure ulcers: systematic review. Lasers in Medical Science. 2017;32(4):937-44. doi: 10.1007/s10103-017-2150-9.
15. Gul NY, Topal A, Cangul IT, Yanik K. The effects of topical tripeptide copper complex and helium‐neon laser on wound healing in rabbits. Veterinary Dermatology. 2008;19(1):7-14. doi: 10.1111/j.1365-3164.2007.00647.x.
16. Tsunekane M, Taguchi N, Inaba H. Reduction of thermal effects in a diode-end-pumped, composite Nd: YAG rod with a sapphire end. Applied optics. 1998;37(15):3290-4. doi: 10.1364/ao.37.003290.
17. Pohekar PG, Rathod SM, Sinha A, Jagtap SS. Physical control of Pseudomonas aeruginosa using He-Ne laser. Bionano Frontier. 2013;6:187-90.
18. Abo-Ksour MF, Al-Jubori SS, Jawad HA. Influence of Helium-Neon laser on some virulence factors of Staphylococcus aureus and Escherichia coli. Al-Mustansiriyah Journal of Science. 2018;29(3):29-34. doi: 10.23851/mjs.v29i3.619.
19. Al-Taie KLS, Rasheed HM. Effects of Nd: YAG (1064NM) on staphylococcus aureus isolated from wounds. Plant Archives. 2019;19(2):1728-31.
20. Ebid AA, Alhammad RM, Alhendi RT, Alqarhi BA, Baweyan EM, Alfadli LH, et al. Immediate effect of pulsed high-intensity neodymium-doped yttrium aluminum garnet (Nd: YAG) laser on staphylococcus aureus and pseudomonas aeruginosa growth: an experimental study. Journal of Physical Therapy Science. 2019;31(11):925-30. doi: 10.1589/jpts.31.925.
21. Altaai ME, Aziz IH, Marhoon AA. Identification Pseudomonas aeruginosa by 16s rRNA gene for Differentiation from Other Pseudomonas Species that isolated from Patients and environment. Baghdad Science Journal. 2014;11(2):1028-34. doi: 10.21123/bsj.2014.11.2.1028-1034.
22. Tseng SP, Teng LJ, Chen CT, Lo TH, Hung WC, Chen HJ, et al. Toluidine blue O photodynamic inactivation on multidrug‐resistant pseudomonas aeruginosa. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery. 2009;41(5):391-7. doi: 10.1002/lsm.20765.
23. Chung W, Petrofsky JS, Laymon M, Logoluso J, Park J, Lee J, et al. The effects of low level laser radiation on bacterial growth. Physical therapy rehabilitation science. 2014;3(1):20-6. doi: 10.14474/ptrs.0000.3.1.20.
24. Khosravi AD, Rostamian J, Moradinegad P. Investigation of bactericidal effect of low level laser of gallium-aluminum-arsenide on cariogenic species on streptococci and lactobacillus. Journal of Medical Sciences. 2008;8(6):579-82. doi: 10.3923/jms.2008.579.582.
25. Awad MM, Tovmasyan A, Craik JD, Batinic-Haberle I, Benov LT. Important cellular targets for antimicrobial photodynamic therapy. Applied microbiology and biotechnology. 2016;100(17):7679-88. doi: 10.1007/s00253-016-7632-3.
26. Vilela SFG, Junqueira JC, Barbosa JO, Majewski M, Munin E, Jorge AOC. Photodynamic inactivation of Staphylococcus aureus and Escherichia coli biofilms by malachite green and phenothiazine dyes: an in vitro study. Archives of Oral Biology. 2012;57(6):704-10. doi: 10.1016/j.archoralbio.2011.12.002.
27. Fang J, Xing J, Gao L, Shen B, Kang H, Jie L, et al. LED array designing and its bactericidal effect researching on Pseudomonas aeruginosa in vitro. In: AOPC 2015: Advanced Display Technology; and Micro/Nano Optical Imaging Technologies and Applications. SPIE; 2015. p. 68-73. doi: 10.1117/12.2197305.
28. Guffey JS, Wilborn J. Effects of combined 405-nm and 880-nm light on Staphylococcus aureus and Pseudomonas aeruginosa in vitro. Photomedicine and Laser Therapy. 2006;24(6):680-3. doi: 10.1089/pho.2006.24.680.
29. Ebid AA, Alhammad RM, Alhindi RT, Alghamdi AA, Alqarhi AK, Abdullah HA, et al. Effect of high-power Nd: YAG laser on the growth of Staphylococcus aureus and Pseudomonas aeruginosa: an experimental study. Journal of Physical Therapy Science. 2021;33(3):222-8. doi: 10.1589/jpts.33.222.
30. Grzech-Leśniak K, Nowicka J, Pajączkowska M, Matys J, Szymonowicz M, Kuropka P, et al. Effects of Nd:YAG laser irradiation on the growth of Candida albicans and Streptococcus mutans: in vitro study. Lasers in Medical Science. 2019;34(1):129-37. doi: 10.1007/s10103-018-2622-6.
31. Salih WH, Hassan SH. The bacteriocidal effects of 632.8 nm HE-NE laser on Staphylococcus aureus colonies. Biomedical Photonics. 2023;12(1):22-7.
32. Ebid AA, Alhammad RM, Alhindi RT, Alghamdi AA, Alqarhi AK, Abdullah HA, et al. Effect of high-power Nd:YAG laser on the growth of Staphylococcus aureus and Pseudomonas aeruginosa: an experimental study. The Journal of Physical Therapy Science. 2021;33(3):222-8. doi: 10.1589/jpts.33.222.
33. Dadras S, Mohajerani E, Eftekhar F, Hosseini M. Different photoresponses of Staphylococcus aureus and Pseudomonas aeruginosa to 514, 532, and 633 nm low level lasers in vitro. Current microbiology. 2006;53(4):282-6. doi: 10.1007/s00284-005-0490-3.
