تأثیر تهاجم یون سولفات و چرخههای تر و خشکشدن بر بتن حاوی ۱ درصد نانوسیلیس
محورهای موضوعی : آنالیز سازه - زلزلهاسماعیل جواهری 1 , پیمان شادمان حیدری 2 , محمد قانونی بقا 3 , مهدی امری 4
1 - گروه عمران
2 - عضو هیات علمی
3 - دانشگاه آزاد-تهران شرق
4 - مدیر داخلی مجله
کلید واژه: نانوسیلیس, سولفات, چرخه تر و خشکشدن, مقاومت فشاری, تجمع سولفات SO3,
چکیده مقاله :
علیرغم رفاه و آسایشی که دانش فنی برای بشر به وجود آورده است متأسفانه عمدتاً در بحث خرابی بتن، جنبه اقتصادی اهمیت بیشتری نسبت به جنبههای مهندسی آن و همچنین هزینه زیادی که صرف بازسازی سازههای تخریبشده در اثر خرابی و خوردگی میگردد، دارد. باتوجهبه اهمیت خرابی ناشی از یون سولفات، لازم است در خصوص دوام و طول عمر سازههای دریایی مطالعاتی انجام شود. در این تحقیق نمونههای بتی حاوی مواد افزودنی نانوسیلیس با جایگزینی نانوسیلیس با 1% از وزن سیمان ساخته شدهاست؛ همچنین دمای محیط سولفاتی در چرخه تر متغیر و خشک ثابت است. در مورد مقاومت فشاری نمونهها بعد از دوره عملآوری ۲۸ روزه، مشاهده شد بهترین مقاومت نمونههایی که ۶۰ و ۹۰ روز در محلول با دماهای ۲۵ و ۳۰ درجه قرار گرفتهاند، متعلق به نمونههایی است که در محلول سدیم ۳۰ درجه سانتیگراد قرار گرفتهاند. همچنین در تست نفوذ و تجمع سولفات (o3S) نشان داده شد که در محلول با دمای ۳۰ درجه میزان نفوذ عمق سولفات کمتر از نمونههای قرارگرفته در محلول ۲۵ درجه است. همچنین کمترین میزان سولفات در عمق ۲ سانتیمتر نمونه ۶۰ روزه قرارگرفته در محلول ۳۰ درجه است و بیشترین مقدار در عمق ۱ سانتیمتری نمونه ۹۰ روزه قرارگرفته در محلول ۲۵ درجه میباشد.
Despite the comfort and convenience brought by technological advances, in the field of concrete deterioration, economic aspects often take precedence over engineering considerations—particularly due to the high costs associated with repairing structures damaged by degradation and corrosion. Considering the importance of deterioration caused by sulfate ions, it is necessary to investigate the durability and service life of marine structures. In this study, concrete specimens containing nano silica as an additive were produced by replacing 1% of the cement weight with nano silica. The exposure regime involved wet–dry cycles, with the temperature of the wet phase being variable while the dry phase temperature remained constant. Compressive strength tests conducted after a 28 day curing period revealed that the highest strength values, for specimens exposed for 60 and 90 days, were obtained in sodium sulfate solution at 30 °C. Sulfate penetration and accumulation (SO₃) tests indicated that at 30 °C, the penetration depth of sulfate was lower than at 25 °C. The lowest sulfate content at a depth of 2 cm was observed in the 60 day specimen immersed in a 30 °C solution, whereas the highest sulfate content at a depth of 1 cm occurred in the 90 day specimen held at 25 °C.
[1] Tadayon MKM, Sepehri H, Sepehri M, editors. Influence of nano-silica particles on mechanical properties and permeability of concrete. The 2nd International Conference on Sustainable Construction Materials and Technologies; 2010.
http://dx.doi.org/10.1515/ntrev-2025-0151
[٢] رمضانیان پور عا, مروج جهرمی س, مهدی خانی م, مودی ف. مقایسه اثرات نانو سیلیس و دوده سیلیس بر روی ریزساختار و دوام نمونه های بتنی. مهندسي عمران اميركبير (اميركبير). 1391;44
https://doi.org/10.22060/ceej.2012.98
[3] Marchand J, Odler I, Skalny JP. Sulfate attack on concrete: CRC Press; 2001.
https://doi.org/10.4324/9780203301623
[4] Mohammadi Y, Ezzati S. Effect of Nanosilica on The permeability of Self Compacting Concrete in Sulfate Environment. Concrete Research. 2016;8(2):47-60. https://doi.org/10.22034/jcema.2020.119979
[5] قانونیبقا م, شایانفر م, عسگرانی س, ذبیحیسامانی م. تخمین عمر مفید سازه های بتن آرمه در شرایط دریایی جزر و مدی. نشریه علمی-پژوهشی مهندسی دریا. 2017;12(24):13-22.
http://marine-eng.ir/article-1-542-fa.html
[6] نعمتی چاری م, صفری آ, احمدی ب, سبحانی ج. بررسی اثرات افزایش چرخههای تر و خشک شدن روی نفوذ یون کلراید در بتن اشباع نشده: شبیهسازی شرایط پاششی. مصالح و سازه های بتنی. 2018,3 , 76-65
https://doi. rg/10.30478/jcsm.2019.82170
[7] Ren J, Lai Y. Study on the durability and failure mechanism of concrete modified with nanoparticles and polypropylene fiber under freeze-thaw cycles and sulfate attack. Cold Regions Science and Technology. 2021;188:103301. https://doi.org/10.1016/j.coldregions.2021.103301
[8] Wang K, Guo J, Yang L. Effect of dry–wet ratio on sulfate transport-reaction mechanism in concrete. Construction and Building Materials. 2021;302:124418. https://doi.org/10.1016/j.conbuildmat.2021.124418
[9] Zheng Y, Zhuo J, Zhang P. A review on durability of nano-SiO2 and basalt fiber modified recycled aggregate concrete. Construction and Building Ma9terials. 2021;304:124659.
https://doi.org/10.1016/j.conbuildmat.2021.124659
[10] Brouwer P. Theory of XRF. Almelo, Netherlands: PANalytical BV. 2006.
https://www.iotcco.com/uploads/VirtualTeaching/Articles/PANanalytical/PANanalytical%20XRF%20theory.pdf
[11] Institute of Standards and Industrial Research of IRAN ... ASTM C39/C39M-05, Standard Test Method for Compressive Strength of Cylindrical. Concrete Specimens.