خالصسازی یک نمونه کنده حفاری با استفاده از امواج ریزموج
محورهای موضوعی : محیط زیست و بهداشت
شکوه نیک اندیش
1
,
محمدصادق توللی
2
,
غلامرضا نجابت
3
1 - گروه مهندسی شیمی، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران.
2 - گروه مهندسی شیمی، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران.
3 - گروه مهندسی پلیمر، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران.
کلید واژه: کنده حفاری, خالص سازی, محیط زیست, ریزموج, گرماوزنسنجی.,
چکیده مقاله :
کندههای حفاری حاوی مقدار زیادی آب و مواد نفتی است که باعث افزایش جرم و حجم آن و همچنین آلوده شدن محیط زیست می شود. برای حذف این ناخالصیها از کندهها از روش های مختلفی استفاده می شود. یکی از روش های خالصسازی این کنده ها استفاده از امواج الکترومغناطیس ریزموج می باشد. در این مقاله تاثیر امواج ریزموج در توانهای مختلف بر روی خالصسازی کنده حفاری دریافت شده از میدان نفتی سروستان استان فارس مورد بررسی قرار گرفته است. جهت بررسی نظام مند تاثیر قدرت امواج و ترکیب کنده بر خالصسازی، از طراحی آزمون استفاده گردید(نرم افزار Design expert 11) که در آن تاثیر سه متغیر توان ریزموج، وزن اولیه کنده و نوع آب همراه با آن، بر روی میزان خالص سازی بررسی شد. تغییرات در وزن کنده حفاری با استفاده از اختلاف وزن قبل و بعد از پرتودهی به دست آمد. همچنین از آزمون های گرما وزن سنجی(TGA) و طیفسنجی مادون قرمز(FTIR) جهت دنبال کردن تغییرات استفاده شد. نتایج نشان داد که با افزایش توان امواج و/یا کاهش وزن کنده، خالصسازی بهبود می یابد. همچنین TGA و FTIR نشان دادند در اثر پرتودهی کنده حفاری، ترکیبات مختلفی از قبیل آب و مولکول های آلی کنده را ترک می کنند. بهترین نتایج هنگامی حاصل شد که وزن نمونه 50 گرم و توان امواج 300 وات و آب همراه از نوع آب سازند انتخاب شد که در این حالت ناخالصی در کنده مورد بررسی از 25 درصد وزنی به 5 درصد وزنی کاهش یافت.
Drill cuttings contain significant amounts of water and petroleum contaminants, which increase their mass and volume, contributing to environmental pollution. To address these issues, various methods are employed to remove these impurities. One effective purification method involves the use of microwave electromagnetic irradiation. This paper investigates the effect of microwave irradiation at different power levels on the purification of cuttings obtained from the Sarvestan oil field in Fars Province. To better understand the impact of various parameters, experimental design software (Design Expert, v.11) is utilized to examine three key factors: microwave power, sample weight, and the type of accompanying water. The changes in the composition of the cuttings are assessed by weighing them with a balance. Additionally, Thermogravimetric Analysis(TGA) and Fourier Transform Infrared Spectroscopy(FTIR) are used for enhanced monitoring of these changes. The results from the software indicate that increasing microwave power or reducing sample weight improves the purification process. TGA and FTIR analyses further demonstrate that microwave irradiation effectively removes various compounds, such as water and organic molecules, from the cuttings. The best results were achieved when 50 grams of samples containing formation water were treated with 300-watt microwave irradiation, resulting in a decrease in the weight percentage of impurities from 25 wt.% to 5 wt.%.
[1]. Mohammadian R., Check Drilling Mud Tasks. International Journal of Advanced Studies in Humanities and Social Science, 2020, 9, 291-302. http://dx.doi.org/10.22034/ijashss.2020.257683.1024
[2]. Chenevert M.E., Dewan J.T., A model for filtration of water-base mud during drilling: determination of mudcake parameters. Petrophysics, 2001, 42, SPWLA-2001-v42n3a4.
[3]. Apaleke A.S., Al-Majed A., Enamul Hossain M., Drilling fluid: state of the art and future trend. North Africa technical conference and exhibition. OnePetro, Cairo, Egypt, February 2012. https://doi.org/10.2118/149555-MS
[4]. Adewole G.M., Adewale T.M., Ufuoma E., Environmental aspect of oil and water-based drilling muds and cuttings from Dibi and Ewan off-shore wells in the Niger Delta, Nigeria, African Journal of Environmental Science and Technology, 4(5), 284-292, 2010. http://dx.doi.org/10.4314/ajest.v4i5.56361
[5]. Wojtanowicz A. K., Oilfield waste disposal control. In: Orszulik, S.T. (eds) Environmental Technology in the Oil Industry. Springer, Dordrecht, 2008, 123-154. https://doi.org/10.1007/978-1-4020-5472-3_5
[6]. Coussot P., Bertrand F., Herzhaft. B., Rheological behavior of drilling muds, characterization using MRI visualization. Oil & gas science and technology, 2004, 59.1, 23-29. http://dx.doi.org/10.2516/ogst:2004003
[7]. Pan D., Vipulanandan C., Amani N., Reddy S. A., Chockalingam C.G., Effects of nanoclay on the rheological properties and resistivity of synthetic based drilling fluids under high temperature, Offshore technology conference. OnePetro, Texas, USA, April 2018. https://doi.org/10.4043/28751-MS
[8]. Herman D., Roberts D.J., A marine anaerobic biodegradation test applied to the biodegradation of synthetic drilling mud base fluids, Soil & Sediment Contamination, 2005, 14, 433-447. https://doi.org/10.1080/15320380500180499
[9]. Khalafi-Nezhad A., Zare A., Parhami A., Soltani-Rad M.N., Nejabat G.R., Microwave-assisted N-nitroarylation of some pyrimidine and purine nucleobases, Canadian Journal of Chemistry, 84, 979-985, 2006, https://doi.org/10.1139/v06-119
[10]. Khalafi-Nezhad A., Zare A., Parhami A., Soltani-Rad M.N., Nejabat G.R., Highly regioselective N-alkylation of benzotriazole under solvent-free conditions, JICS, 4, 271–278 (2007). https://doi.org/10.1007/BF03245976
[11]. Zare A., Hasaninejad A., Khalafi-Nezhad A., Moosavi Zare A.R, Parhami A., Nejabat G.R., A green solventless protocol for Michael addition of phthalimide and saccharin to acrylic acid esters in the presence of zinc oxide as a heterogeneous and reusable catalyst, Arkivoc, (i), 58-69, 2007.
[12]. Albuquerque H.M.T., Pinto D.C.G.A., Silva A.M.S., Microwave Irradiation: Alternative Heating Process for the Synthesis of Biologically Applicable Chromones, Quinolones, and Their Precursors, Molecules 2021, 26(20), 6293; https://doi.org/10.3390/molecules26206293
[13] Mingos D.M.P., Baghurst D.R., Tilden Lecture. Applications of microwave dielectric heating effects to synthetic problems in chemistry, Chem. Soc. Rev. 1991, 20, 1–47. https://doi.org/10.1039/CS9912000001
[14]. Gabriel C., Gabriel S., Grant E.H., Halstead B.S. Mingos D.M.P., Dielectric parameters relevant to microwave dielectric heating, Chem. Soc. Rev. 1998, 27, 213–223. https://doi.org/10.1039/A827213Z
[15]. C.O. Kappe, Microwave-Assisted Chemistry, Editor(s): John B. Taylor, David J. Triggle, Comprehensive Medicinal Chemistry II, Elsevier, 2007, Pages 837-860, ISBN 9780080450445, https://doi.org/10.1016/B0-08-045044-X/00109-7
[16]. Shang, H., Snape C.E., Kingman S.W., Robinson J.P., Microwave treatment of oil-contaminated North Sea drill cuttings in a high power multimode cavity, Separation and purification technology 49.1 (2006): 84-90. https://doi.org/10.1016/j.seppur.2005.08.012
[17]. Robinson J. P., Kingman S.W., Snape C.E., Barranco R., Shang H., Bradley M.S.A., Bradshaw S.M., Remediation of oil-contaminated drill cuttings using continuous microwave heating, Chemical Engineering Journal 152.2-3 (2009): 458-463. https://doi.org/10.1016/j.cej.2009.05.008
[18]. Pereira M.S., Panisset C.M.A., Martins A.L., Marques de sa C.H., Barrozo M.A.S., Ataide C.A., Microwave treatment of drilled cuttings contaminated by synthetic drilling fluid, Separation and purification technology 124 (2014): 68-73. https://doi.org/10.1016/j.seppur.2014.01.011
[19]. Junior I.P., Pereira M.S., dos Santos J.M., Duarte C.R., Ataide C.H., Panisset C.M.A., Microwave remediation of oil well drill cuttings, Journal of Petroleum Science and Engineering 134 (2015): 23-29. https://doi.org/10.1016/j.petrol.2015.07.022
[20]. Hou Y., Qi S., You H., Huang Z., Niu Q., The study on pyrolysis of oil-based drilling cuttings by microwave and electric heating. Journal of environmental management 228 (2018): 312-318. https://doi.org/10.1016/j.jenvman.2018.09.040
[21]. Alves, G.M., Irineu P.J., Microwave remediation of oil-contaminated drill cuttings–A review, Journal of Petroleum Science and Engineering 207 (2021): 109137. https://doi.org/10.1016/j.petrol.2021.109137
[22]. Nejabat G.R., Nekoomanesh M., Arabi H., Salehi-Mobarakeh H., Zohuri G.H., Mortazavi S.M.M., Ahmadjo S., Miller S.A., Study of Ziegler-Natta/(2-PhInd)2ZrCl2 hybrid catalysts performance in slurry propylene polymerization, Polyolefins Journal, Vol. 2 No. 2 (2015) 73-87. https://doi.org/10.22063/poj.2015.1145
[23]. Arabi H., Salehi-Mobarakeh H., Balzadeh Z., Nejabat G.R., Copolymerization of Ethylene/5-Ethylidene-2-Norbornene with Bis (2-phenylindenyl) Zirconium Dichloride Catalyst: I. Optimization of the Operating Conditions by Response Surface Methodology, J. Appl. Polym. Sci. 129: 3047–3053, 2013. https://doi.org/10.1002/app.38972
[24]. Nassiri H., Arabi H., Hakim S., Bolandi S., Polymerization of propylene with Ziegler–Natta catalyst: optimization of operating conditions by response surface methodology (RSM), Polym. Bull. (2011) 67:1393–1411. https://doi.org/10.1007/s00289-011-0568-y
