شبیهسازی و تحلیل خواص الکترونی نانوساختارهای ناهمگون Si2BN
محورهای موضوعی : کاربرد نانوساختارها
پروین بهزادی
1
,
امیر علی اکبری
2
1 - شرکت تولید و بهرهبرداری سد و نیروگاه دز.
2 - گروه فیزیک، دانشکده علوم، دانشگاه شهید چمران اهواز، اهواز، ایران.
کلید واژه: نظریه تابعی چگالی, نانوساختار, ساختار ناهمگون, ترکیب Si2BN.,
چکیده مقاله :
هدف این پژوهش بررسی این موضوع است که آیا ساخت نانو نوارها یا ایجاد ساختارهای ناهمگون می تواند عاملی برای باز شدن گاف نوار الکترونی این ترکیب باشد یا خیر. این کار در چارچوب نظریه تابعی چگالی با تقریبهای نظیر PBE و LDA مورد بررسی قرار گرفته است. محاسبات توسط روش امواج تخت بهبودیافته و با نرمافزار کوانتوم اسپرسو انجام شده است. گونه جدیدی از شبکههای گرافن گونه هگزاگونالی با پیوند sp2 شامل عناصر Si ،B و N نیز وجود دارد که دارای پیوند کووالانسی درون لایهای و پیوند واندروالسی میان لایهای هستند. خواص ساختاری، الکترونی ترکیب Si2BN دلالت بر رفتار فلزی این ترکیب دارد. از آنجایی که حرکت الکترونها در Si2BN سرعت بالایی دارد، این ویژگی در تولید آند بسیار مفید است. ترکیب این ویژگیها موجب میشود تا نفوذ یون در آن به خوبی انجام شده و از آن بتوان برای تولید باتری استفاده کرد. شارژ و تخلیه در این آندها، با سرعت بالایی انجام میشود. نتایج شبیهسازیها و محاسبات این پژوهش میتواند به محققان کمک کند تا از این ماده برای ساخت آند باتری استفاده کنند.
The aim of this study is to investigate whether the creation of nanoribbons or the creation of heterogeneous structures can be a main factor in the opening of the electronic band gap of these compounds. This work has been investigated in the framework of density functional theory with approximations such as PBE and LDA. Calculations have been performed using the augmented plane waves method and Quantum Espresso software. There is also a new type of hexagonal graphene network with sp2 bonding, including Si, B, and N elements, which have intralayer covalent bonding and interlayer van der Waals bonding. The structural and electronic properties of the Si2BN compound indicate the metallic behavior of this compound. Since the movement of electrons in Si2BN is high, this feature is very useful in the production of anodes. The combination of these features allows for good ion penetration in it and it can be used to produce batteries. Charging and discharging in these anodes are carried out at high speeds. The results of the simulations and calculations of this research can help researchers use this material to make battery anodes.
[1] Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle M, and Akinwande D, Silicene field-effect transistors operating at room temperature, Nature nanotechnology 10 (3): 227-231 (2015(
[2] Acerce M, Voiry D, and Chhowalla M, Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials, Nature nanotechnology 10 (4): 313-318 (2015(
[3] Sun Y, Gao S, and Xie Y, Atomically-thick two-dimensional crystals: electronic structure regulation and energy device construction, Chemical Society Reviews 43 (2): 530-546 (2014(
[4] Peng X, Peng L, Wu C, and Xie Y, Two dimensional nanomaterials for flexible supercapacitors, Chemical Society Reviews 43 (10): 3303-3323 (2014(
[5] Chen Y, Tan C, Zhang H, and Wang L, Two-dimensional graphene analogues for biomedical applications, Chemical Society Reviews 44 (9): 2681-2701 (2015(
[6] Tan C, Yu P, Hu Y, Chen J, Huang Y, Cai Y, Luo Z, Li B, Lu Q, and Wang LHigh-yield exfoliation of ultrathin two-dimensional ternary chalcogenide nanosheets for highly sensitive and selective fluorescence DNA sensors Journal of the American Chemical Society 137 (32): 10430-10436 (2015(
[7] Novoselov K, Geim A, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S, and Firsov A, Two-dimensional gas of massless Dirac fermions in graphene, nature 438 (7065): 197-200 (2005(
[8] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M, and Geim A K, Fine structure constant defines visual transparency of graphene, Science 320 (5881): 1308 (2008)
[9] Ferrari A C, Bonaccorso F, Fal'Ko V, Novoselov K S, Roche S, Bøggild P, Borini S, Koppens F H, Palermo V, and Pugno N, Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, Nanoscale 7 (11): 4598-4810 (2015).
[10] Lin Y, Williams T V, and Connell J W, Soluble, exfoliated hexagonal boron nitride nanosheets, The Journal of Physical Chemistry Letters 1 (1): 277-283 (2009(
[11] Liu A Y, Wentzcovitch R M, and Cohen M L, Atomic arrangement and electronic structure of BC2N, Physical Review B 39 (3): 1760 (1989(
[12] Nozaki H and Itoh S, Structural stability of BC2N, Journal of Physics and Chemistry of Solids 57 (1): 41-49 (1996(
[13] Lam K-T, Lu Y, Feng Y P, and Liang G, Stability and electronic structure of two dimensional C x (BN) y compound, Applied Physics Letters 98 (2): 022101 (2011(
[14] Sun J, Zhou X-F, Fan Y-X, Chen J, Wang H-T, Guo X, He J, and Tian Y, First-principles study of electronic structure and optical properties of heterodiamond BC2N, Physical Review B 73 (4): 045108 (2006(
15] Liu L, Zhao Z, Yu T, Zhang S, Lin J, and Yang G, Hexagonal BC2N with Remarkably High Hardness, The Journal of Physical Chemistry C 2(12): 6801-6807 (2018).
[16] Andriotis A N, Richter E, and Menon M, Prediction of a new graphenelike Si2BN solid, Physical Review B 93 (8): 081413 (2016(
[17] Kresse G and Hafner J, Ab initio molecular dynamics for liquid metals, Physical Review B 47 (1): 558 (1993)
[18] Heyd J, Scuseria G E, and Ernzerhof M, Erratum:“Hybrid functionals based on a screened Coulomb potential”[J. Chem. Phys. 118, 8207 (2003)], The Journal of Chemical Physics 124 (21): 219906 (2006(
[19] Singh D, Gupta S K, Sonvane Y, Hussain T, and Ahuja R, Achieving ultrahigh carrier mobilities and opening the band gap in two-dimensional Si2BN, Physical Chemistry Chemical Physics 20 (33): 21716-21723 (2018(
[20] Perdew J P, Burke K, and Ernzerhof M, Generalized gradient approximation made simple, Physical review letters 77 (18): 3865 (1996(
[21] Sandoval E D, Hajinazar S, and Kolmogorov A N, Stability of two-dimensional BN-Si structures, Physical Review B 94 (9) (2016(
[22] Segall M, Lindan P J, Probert M a, Pickard C, Hasnip P, Clark S, and Payne M, First-principles simulation: ideas, illustrations and the CASTEP code, Journal of Physics: Condensed Matter 14 (11): 2717 (2002(
[23] M. Balkanski, R. F. Wallis, R. F. Wallis, Semiconductor physics and applications. Oxford University Press,(2000).
[24] Yuan S-J, Zhang H, and Cheng X-L, Tunable Localized Surface Plasmon Resonances in a New Graphene-Like Si2BN’s Nanostructures, Plasmonics: 1-7 (2017.(
[25] Z. G. Fthenakis and M. Menon, “Structural deformations and mechanical properties of Si2BN under uniaxial and uniform biaxial strain in comparison with graphene: An ab initio study,” Phys. Rev. B 99(20), 205302-205316 (2019).
[26] T. P. Kaloni, Y. C. Cheng, and U. Schwingenschlögl, “Electronic structure of superlattices of graphene and hexagonal boron nitride,” J. Mater. Chem. 22(3), 919–922 (2012).
[27] K. Watanabe, T. Taniguchi, and H. Kanda, “Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal,” Nat. Mater. 3(6), 404–409 (2004).
