تأملی بر تعدادی از روشهای تثبیت پروتئین روی بستر سطوح جامدات یا نانوذرات
محورهای موضوعی : زیست شناسی
1 - استادیار مرکز تحقیقات نانوبیوتکنولوژی دانشکده علوم پزشکی دانشگاه بقیه ا...
کلید واژه: تثبیت, پروتئین, فعالیت, آنزیم, بستر,
چکیده مقاله :
تثبیت، محدود کردن و یا ناتوان سازی تحرک گونه در یک محیط می باشد و فرایندی که در آن آنزیم یا پروتئین به صورت فیزیکی یا شیمیایی در فضایی از یک بستر تعیین شده همراه با حفظ فعالیت کاتالیتیکی و یا عملکردی محدود می شود را تثبیت پروتئین یا آنزیم می گویند. آنزیم ها و پروتئین های تثبیت شده بطور گسترده ای در بسیاری از زمینه ها مورد استفاده قرارگرفته و دارای کاربردهای پزشکی و صنعتی می باشند. آنزیم ها و پروتئین های تثبیت شده پتانسیل زیادی در آنالیزهای کلینیکی، صنعتی و نمونه های محیطی دارند و به میزان بالایی در زمینه ارسال و انتقال دارو به سیستم های مختلف زیستی و شناسایی تومورها، متابولیسم دارو، صنعت غذا، تولید سوخت زیستی و پاکسازی زیستی مورد استفاده قرار می گیرند. در حال حاضر پروتئین تثبیت شده به طور معمول در صنایع کشاورزی، مواد غذایی و در زمینه های پزشکی برای تشخیص و درمان بیماری های مختلف مورد استفاده قرار می گیرند. ابداع روشهای کارآمد تثبیت در پروتئین های مختلف مانند آنتی بادی ها، آنزیم ها، گیرنده ها موجب ایجاد تحولات اساسی در زمینه های پزشکی شده است. روشهای تثبیت فیزیکی و شیمیایی متنوعی ارائه شده است که هر کدام مزایا م معایب خود را دارند اما بنظر می رسد روشهای تثبیت کوالان مناسبترین است زیرا پایدار بوده و زمینه استقرار جهت دار پروتئین بر سطح بستر را فراهم می کند. لازم به ذکر است که ویژگی های بستر و روش تثبیت از موارد مهم در تثبیت پروتئین به شمار می روند.
Stabilization is the restriction or incapacitation of the mobility of a species in an environment, and the process in which an enzyme or protein is physically or chemically confined in a defined space of a substrate while maintaining catalytic or functional activity is called protein or enzyme immobilization. Stabilized enzymes and proteins are widely used in many fields and have medical and industrial applications. Stabilized enzymes and proteins have great potential in clinical, industrial and environmental analysis and are widely used in the field of drug delivery and transfer to various biological systems and tumor identification, drug metabolism, food industry, biofuel production and bioremediation. Currently, stabilized proteins are commonly used in agricultural, food and medical industries for the diagnosis and treatment of various diseases. The development of efficient immobilization methods in various proteins such as antibodies, enzymes, receptors has caused fundamental changes in the medical fields. Various physical and chemical immobilization methods have been proposed, each with its own advantages and disadvantages, but covalent immobilization methods seem to be the most suitable because they are stable and provide the basis for directional protein deposition on the substrate surface. It should be noted that the characteristics of the immobilization substrate and the immobilization method are important factors in protein immobilization.
[1]. Rafael C. Rodrigues, Ángel Berenguer-Murcia, Diego Carballares, Roberto Morellon-Sterling, Roberto Fernandez-Lafuente , "Stabilization of enzymes via immobilization: Multipoint covalent attachment and other stabilization strategies", Biotechnology Advances, Volume 52, 15 November 2021, 107821, https://doi.org/10.1016/j.biotechadv.2021.107821
[2]., Yasmin R. Maghraby, Rehan M. El-Shabasy, Ahmed H. Ibrahim, and Hassan Mohamed El-Said Azzazy, “Enzyme Immobilization Technologies and Industrial Applications”, ACS Omega 2023, 8, 6, 5184–5196,
[3]. Nguyen HH, Lee SH, Lee UJ, Fermin CD, Kim M. “Immobilized Enzymes in Biosensor Applications”. Materials (Basel). 2019 Jan 2;12(1):121. doi: 10.3390/ma12010121. PMID: 30609693; PMCID: PMC6337536. Materials (Basel). 2019 Jan; 12(1): 121.
[4]. Rigo, E., Ninow, J. L., Di Luccio, M., Oliveira, J. V., Polloni, A. E., Remonatto, D., Arbter, F., Vardanega, R., De Oliveira, D., Treichel, H., (2010), “Lipase production by solid fermentation of soybean meal with different supplements”. LWT Food Sci. Technol., 43: 1132-1137.
[5]. Sharma, R., Chisti, Y. and Banerjee, U. C., (2001), “Production, purification, characterization, and applications of lipases”, Biotechnol. Adv., 19, 627-662.
[6]. Hou, C. T., (2002), Industrial uses of lipases, in: Kuo, T. M. and Gardner, H. W. (Eds), Lipid Biotechnology, pp. 387-397, New York, Basel: Marcel Dekker.
[7]. Bilal, M., et al., “Magnetic nanoparticles as versatile carriers for enzymes immobilization: A review”. International journal of biological macromolecules, 2018
[8]. Homaei, A.A., et al., “Enzyme immobilization: an update”. Journal of chemical biology, 2013. 6(4): p. 185-205
[9]. Begam MS, Pradeep FS, Pradeep BV. “Production, purification, characterization and applications of lipase from Serratia marcescens MBB05”. Asian J Pharm Clin Res. 2012;5(4):237-45.
[10]. Prem Chandra, Enespa, Ranjan Singh, and Pankaj Kumar Arora, “Microbial lipases and their industrial applications: a comprehensive review”, Microb. Cell. Fact. (2020) 19: 169. doi: 10.1186/s12934-020-01428-8 (Microbial Cell Factories )
[11]. Isabela Abreu Trindade Ximenes, Pamella Christina Ortega de Oliveira, Camila Anchau Wegermann, Marcela Cristina de Moraes, “Magnetic particles for enzyme immobilization: A versatile support for ligand screening”, Journal of Pharmaceutical and Biomedical Analysis, Volume 204, 10 September 2021, 114286
[12]. Muhammad Bilal, Sarmad Ahmad Qamar, Diego Carballares, Ángel Berenguer-Murcia, Roberto Fernandez-Lafuente, “Proteases immobilized on nanomaterials for biocatalytic, environmenta l and biomedical applications: Advantages and drawbacks”, Biotechnology Advances, Volume 70, January–February 2024, 108304, https://doi.org/10.1016/j.biotechadv.2023.108304
[13]. Ansari, S.A. and Q. Husain, “Potential applications of enzymes immobilized on/in nano materials: a review”. Biotechnology advances, 2012. 30(3): p. 512-523.
[14]. Kim, J., J.W. Grate, and P. Wang, “Nanobiocatalysis and its potential applications”. Trends in biotechnology, 2008. 26(11): p. 639-646.
[15]. Tripathi, A., et al., “Improved bio-catalytic conversion by novel immobilization process using cryogel beads to increase solvent production”. Enzyme and Microbial Technology, 2010. 47(1-2): p. 44-51.
[16]. K Eskandari H. Ghourchian “Structural changes of glucose oxidase upon interaction with gold-coated magnetic nano-particles”. International Journal of Biological Macromolecules. 51 (2012) 998– 1002.
[17]. K Eskandari H. Ghourchian “Performance of gold- and silver-coated magnetic nanoparticles as carriers for horseradish peroxidase “J IRAN CHEM SOC (2013) 10:1113–1121.
[18]. Hajar Zarei, Hedayatollah Ghourchian, Khadijeh Eskandari, Majid Zeinali. "Magnetic nanocomposite of anti-human IgG/COOH–multiwalled carbon nanotubes/Fe3O4as a platform for electrochemical immunoassay" Analytical Biochemistry 421 (2012) 446–453.
[19]. Riley M. Bednar, Thaddeus W. Golbek, Kelsey M. Kean, Wesley J. Brown, Subhashis Jana, Joe E. Baio, P. Andrew Karplus, and Ryan A. Mehl, “Immobilization of Proteins with Controlled Load and Orientation”, ACS Appl. Mater. Interfaces 2019, 11, 40, 36391–36398. https://doi.org/10.1021/acsami.9b12746. ACS Applied Materials & Interfaces
[20]. Khadijeh Eskandari , Hajar Zarei , Hedayatollah Ghourchian, "The Electrochemical Study of Glucose Oxidase on Gold-Coated Magnetic Iron Oxide Nanoparticle" Journal of Analytical chemistry, 2015.
[21]. Mohsen Akbarian and Shu-Hui Chen, “Instability Challenges and Stabilization Strategies of Pharmaceutical Proteins”, Pharmaceutics. 2022 Nov; 14(11): 2533. doi: 10.3390/pharmaceutics14112533
[22]. Eduardo Pérez-Botella, Susana Valencia, and Fernando Rey, “Zeolites in Adsorption Processes: State of the Art and Future Prospects”, Chemical Reviews. 2022, 122, 24, 17647–17695, https://doi.org/10.1021/acs.chemrev.2c00140,
[23]. Wright, P. A. Microporous Framework Solids; Royal Society of Chemistry: Cambridge, 2008; Chapter 7, pp 257– 311.
[24]. Oneesha H. P. Gunawardene, Chamila A. Gunathilake, Kumar Vikrant, and Sumedha M. Amaraweera, “Carbon Dioxide Capture through Physical and Chemical Adsorption Using Porous Carbon Materials: A Review”, Atmosphere 2022, 13(3), 397; https://doi.org/10.3390/atmos13030397
[25]. Hudson, S., J. Cooney, and E. Magner, “Proteins in mesoporous silicates”. Angewandte Chemie International Edition, 2008. 47(45): p. 8582-8594.
[26]. Pierre, A., “The sol-gel encapsulation of enzymes”. Biocatalysis and Biotransformation, 2004. 22(3): p.145-170.
[27]. Chen, Y.Z., et al., “Immobilization of lipases on hydrophobilized zirconia nanoparticles: highly enantioselective and reusable biocatalysts”. Langmuir, 2008. 24(16): p. 8877-8884.
[28]. Hosseini, D., “Protective effect of nanozinc oxide on reproductive system and fertility of adult male Wistar rats following doxorubicin treatment”. Arak Med Uni J, 2013. 16: p. 1-9.
[29]. Svendsen, A., “Lipase protein engineering”. Biochimica et Biophysica Acta (BBA)/Protein Structure and Molecular Enzymology, 2000. 1543(2): p. 223-238.
[30]. Aliyar Javadi, Saeid Dowlati, Reinhard Miller, Emanuel Schneck, Kerstin Eckert, and Matthias Kraume, “Dynamics of Competitive Adsorption of Lipase and Ionic Surfactants at the Water–Air Interface”, Langmuir 36(2020)40, 12010-1202, DOI: https://doi.org/10.1021/acs.langmuir.0c02222
[31]. Zhou, G., et al., “Immobilization of glucose oxidase on rod-like and vesicle-like mesoporous silica for enhancing current responses of glucose biosensors”. Talanta, 2011. 84(3): p. 659-665.
[32]. Bhatia, S., “Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications”, in Natural polymer drug delivery systems. 2016, Springer. p. 33-93.
[33]. Moghaddam, A.B., et al., “Synthesis of ZnO nanoparticles and electrodeposition of polypyrrole/ZnO nanocomposite film”. Int J Electrochem Sci, 2009. 4(2): p. 247-257.
[34]. Ali, M. and M. Winterer, “ZnO nanocrystals: surprisingly ‘alive’”. Chemistry of Materials, 2009. 22(1): p. 85-91.
[35]. Yamashita, I., “Fabrication of a two-dimensional array of nano-particles using ferritin molecule”. Thin Solid Films, 2001. 393(1-2): p. 12-18.
[36]. Gajos K, Petrou P, Budkowski A. “Comparison of Physical Adsorption and Covalent Coupling Methods for Surface Density-Dependent Orientation of Antibody on Silicon”. Molecules. 2022 Jun 7;27(12):3672. doi: 10.3390/molecules27123672. PMID: 35744796; PMCID: PMC9228713.
[37]. Gabriella Cavallo, Pierangelo Metrangolo, Roberto Milani, Tullio Pilati, Arri Priimagi, Giuseppe Resnati, and Giancarlo Terraneo, “The Halogen Bond”, Chemical Reviews. 2016, 116, 4, 2478–2601, https://doi.org/10.1021/acs.chemrev.5b00484,
[38]. Xinchun Yang, Zakir Ullah, J. Fraser Stoddart, and Cafer T. Yavuz, “Porous Organic Cages”, Chemical Reviews. 2023, 123, 8, 4602–4634, https://doi.org/10.1021/acs.chemrev.2c00667,
[39]. Bhattacharya, R. and P. Mukherjee, “Biological properties of “naked” metal nanoparticles”. Advanced drug delivery reviews, 2008. 60(11): p. 1289-1306.
[40]. Ostrowski, A.D., et al., Nanotoxicology: characterizing the scientific literature, 2000–2007. Journal of Nanoparticle Research, 2009. 11(2): p. 251-257.
[41]. Li, J., et al., “The photodynamic effect of different size ZnO nanoparticles on cancer cell proliferation in vitro”. Nanoscale research letters, 2010. 5(6): p. 1063.
[42]. Premanathan, M., et al., “Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation”. Nanomedicine: Nanotechnology, Biology and Medicine, 2011. 7(2): p. 184-192.
[43]. Lin X, O'Reilly Beringhs A, Lu X. “Applications of Nanoparticle-Antibody Conjugates in Immunoassays and Tumor Imaging”. AAPS J. 2021 Mar 14;23(2):43. doi: 10.1208/s12248-021-00561-5. PMID: 33718979; PMCID: PMC7956929.
[44]. Das, D., et al., “Synthesis of ZnO nanoparticles and evaluation of antioxidant and cytotoxic activity”. Colloids and Surfaces B: Biointerfaces, 2013. 111: p. 556-560.
[45]. Li, L.-Z., et al., “Toxicity of zinc oxide nanoparticles in the earthworm, Eisenia fetida and subcellular fractionation of Zn. Environment International”, 2011. 37(6): p. 1098-1104.
[46]. Hosseinkhani, P., et al., “Determining the antibacterial effect of ZnO nanoparticle against the pathogenic bacterium, Shigella dysenteriae (type 1)”. International Journal of Nano Dimension, 2011. 1(4): p. 279-285.
[47]. F Dashtestani, K Eskandari, “Oriented T4 Bacteriophage Immobilization for Recognition of Escherichia coli in Capacitance Method”, Int. J. Electrochem. Sci.2016
[48]. K Eskandari, “Bacteriophage-based biosensor for detection of E. Coli bacteria on graphene modified carbon paste electrode”, Nanoscience and Nanotechnology – Asia 9(4), 2019
[49]. Girod, A., et al., “The VP1 capsid protein of adeno-associated virus type 2 is carrying a phospholipase A2 domain required for virus infectivity”. Journal of General Virology, 2002. 83(5): p. 973-978.
[50]. Ray, A., “Application of lipase in industry”. Asian Journal of Pharmacy and Technology, 2012. 2(2): p. 33-37.
[51]. Wang P, Wang X, Wang L, Hou X, Liu W, Chen C. “Interaction of gold nanoparticles with proteins and cells”. Sci Technol Adv Mater. 2015 Jun 18;16(3):034610. doi: 10.1088/1468-6996/16/3/034610. PMID: 27877797; PMCID: PMC5099834.
[52]. Si NT, Nhung NTA, Bui TQ, Nguyen MT, Nhat PV. “Gold nanoclusters as prospective carriers and detectors of pramipexole”. RSC Adv. 2021 May 5;11(27):16619-16632. doi: 10.1039/d1ra02172a. PMID: 35479146; PMCID: PMC9031969.
[53]. Rios, N.S., et al., “Biotechnological potential of lipases from Pseudomonas: sources, properties and applications”. Process biochemistry, 2018.
[54]. E. Ranjbakhsh, A. K. Bordbar, M. Abbasi, A. R. Khosropour, and E. Shams, "Enhancement of stability and catalytic activity of immobilized lipase on silicacoated modified magnetite nanoparticles," Chemical Engineering Journal, vol. 179, pp. 272-276, 2012.
[55]. Maximiliano L. Cacicedo, Ricardo M. Manzo, Sofía Municoy, Horacio L. Bonazza, German A. Islan, Martín Desimone, Martin Bellino, Enrique J. Mammarella, Guillermo R. Castro, “Chapter 7 - Immobilized Enzymes and Their Applications, Advances in Enzyme echnology”, Biomass, Biofuels, Biochemicals, 2019, Pages 169-200. https://doi.org/10.1016/B978-0-444-64114-4.00007-8.
[56]. W. Xie and M. Huang, "Immobilization of Candida rugosa lipase onto grapheme oxide Fe3O4 nanocomposite: Characterization and application for biodiesel production," Energy Conversion and Management, vol. 159, pp. 42-53, 2018/03/01/ 2018
[57]. Z. Amini, Z. Ilham, H. C. Ong, H. Mazaheri, and W.-H. Chen, "State of the art and prospective of lipase-catalyzed transesterification reaction for biodiesel production," Energy Conversion and Management, vol. 141, pp. 339-353, 2017/06/01/ 2017.
[58]. R .Sankaran, P. L. Show, and J.-S. Chang, "Biodiesel production using immobilized lipase: feasibility and challenges," vol. 10, no. 6, pp. 896-916, 2016.
[59]. E. P. Cipolatti et al., "Nanomaterials for biocatalyst immobilization – state of the art and future trends," RSC Advances, 10.1039/C6RA22047A vol. 6, no. 106, pp. 104675-104692, 2016
[60]. Minkner, R., Xu, J., Takemura, K. et al. “Ni-modified magnetic nanoparticles for affinity purification of His-tagged proteins from the complex matrix of the silkworm fat body”. J Nanobiotechnol 18, 159 (2020). https://doi.org/10.1186/s12951-020-00715-1
[61]. Vedarethinam V, Jeevanandam J, Acquah C, Danquah MK. “Magnetic Nanoparticles for Protein Separation and Purification”. Methods Mol Biol. 2023;2699:125-159. doi: 10.1007/978-1-0716-3362-5_8. PMID: 37646997.
[62]. Kucera J, “Fungal mycelium-the source of chitosan for chromatography”, Chromatogr B, (2004), 808, 69-73.
[63]. Mi FL, Kuan CY, Shyu SS, Lee ST, Chang SF, “The study of gelation kinetics and chain-relaxation properties of glutaraldehyde cross-linked chitosan gel and their effects on microspheres preparation and drug release”, Carbohydr Polym, (2000), 41, 389-96.
[64]. W. Xie and J. Wang, "Enzymatic Production of Biodiesel from Soybean Oil by Using Immobilized Lipase on Fe3O4/Poly(styrene-methacrylic acid) Magnetic Microsphere as a Biocatalyst," Energy & Fuels, vol. 28, no. 4, pp. 2624-2631, 2014/04/17 2014.
[65]. M. Kalantari, M. Kazemeini, and A. Arpanaei, "Evaluation of biodiesel production using lipase immobilized on magnetic silica nanocomposite particles of various structures ",Biochemical Engineering Journal, vol. 79, pp. 267-273, 2013/10/15/ 2013.
[66]. K Eskandari, “An effort to making a colorimitric nano-biosensor for vibrio cholera detection”, Current Nanoscience, 2020
[67]. D.-T. Tran, C.-L. Chen, and J.-S. Chang, "Immobilization of Burkholderia sp. lipase on a ferric silica nanocomposite for biodiesel production," Journal of Biotechnology, vol. 15 ,8no. 3, pp. 112-119, 2012/04/15/ 2012.
[68]. W. Xie and J. Wang, "Immobilized lipase on magnetic chitosan microspheres for transesterification of soybean oil," Biomass and Bioenergy, vol. 36, pp. 373-380, 2012/01/01/ 2012.
[69]. E. P. Cipolatti et al., "Nanomaterials for biocatalyst immobilization – state of the art and future trends," RSC Advances, 10.1039/C6RA22047A vol. 6, no. 106, pp. 104675-104692, 2016.
[70]. J. Lu, R. R. Weerasiri, and I. Lee, "Carbon nanotubes tuned foam structures as novel nanostructured biocarriers for lignocellulose hydrolysis," Biotechnology Letters, vol. 35, no. 2, pp. 181-188, 2013.
[71]. M. L. Verma, C. J. Barrow, and M. Puri, "Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production," (in eng), Appl Microbiol Biotechnol, vol. 97, no. 1, pp. 23-39, Jan 2013.
[72]. John H. T. Luongcorresponding and Sandeep K. Vashistcorresponding, “Chemistry of Biotin–Streptavidin and the Growing Concern of an Emerging Biotin Interference in Clinical Immunoassays”, ACS Omega. 2020 Jan 14; 5(1): 10–18. doi: 10.1021/acsomega.9b03013, PMCID: PMC6963918, PMID: 31956746
[73]. A. A. Gokhale, J. Lu, and I. Lee, "Immobilization of cellulase on magnetoresponsive graphene nano-supports," Journal of Molecular Catalysis B: Enzymatic, vol. 90, pp. 76-86, 2013/06/01/ 2013.
[74]. M. L. Verma, C. J. Barrow, and M. Puri, "Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production," (in eng), Appl Microbiol Biotechnol, vol. 97, no. 1, pp. 23-39, Jan 2013.
[75]. Ofoedu CE, Iwouno JO, Ofoedu EO, Ogueke CC, Igwe VS, Agunwah IM, Ofoedum AF, Chacha JS, Muobike OP, Agunbiade AO, Njoku NE, Nwakaudu AA, Odimegwu NE, Ndukauba OE, Ogbonna CU, Naibaho J, Korus M, Okpala COR. “Revisiting food-sourced vitamins for consumer diet and health needs: a perspective review, from vitamin classification, metabolic functions, absorption, utilization, to balancing nutritional requirements”. PeerJ. 2021 Sep 1;9:e11940. doi: 10.7717/peerj.11940. PMID: 34557342; PMCID: PMC8418216.
[76]. M. D. Besteti, A. G. Cunha, D. M. G. Freire, and J. C. Pinto, "Core/Shell Polymer Particles by Semibatch Combined Suspension/Emulsion Polymerizations for Enzyme Immobilization," vol. 299, no. 2, pp. 135-143, 2014
[77]. Y. Kuwahara, T. Yamanishi, T. Kamegawa, K. Mori, M. Che, and H. Yamashita, "Lipase-embedded silica nanoparticles with oil-filled core–shell structure: stable and recyclable platforms for biocatalysts," Chemical Communications, 10.1039/C2CC17896F vol. 48, no. 23, pp. 2882-2884, 2012.
[78]. M. Guncheva, K. Paunova, M. Dimitrov, and D. Yancheva, "Stabilization of Candida rugosa lipase on nanosized zirconia-based materials," Journal of Molecular Catalysis B: Enzymatic, vol. 108, pp. 43-50, 2014/10/01/ 2014.
[79]. X. Yan, X. Wang, P. Zhao, Y. zhang, P. Xu, and Y. Ding, "Xylanase immobilized nanoporous gold as a highly active and stable biocatalyst ",Microporous and Mesoporous Materials, vol. 161, pp. 1-6, 2012/10/01/ 2012.
[80]. U. Guzik, K. Hupert-Kocurek, and D. Wojcieszyńska, "Immobilization as a Strategy for Improving Enzyme Properties-Application to Oxidoreductases," vol. 19, no. 7, p. 8995, 2014.
