بررسی رادیوگرافی میزان القاء و هدایت استخوان سازی با استفاده از نانو کلسیم فسفات دو فازی در استخوان ران خرگوش
محورهای موضوعی : پژوهش های بالینی و آزمایشگاهی دامپزشکی
پژمان ناظم زمردی
1
,
شاهین گل محمدی
2
,
خشایار معارفیان
3
1 - دانشگاه آزاد اسلامی واحد سنندج - دانشکده دامپزشکی
2 - دانشگاه آزاد اسلامی واحد سنندج
3 - دانش آموخته مقطع دکترای عمومی، دانشکده دامپزشکی، دانشگاه آزاد اسلامی واحد سنندج، سنندج، ایران.
کلید واژه: نانوکلسیم فسفات دوفازی, استخوانسازی, رادیوگرافی, نقیصه استخوان, خرگوش,
چکیده مقاله :
زمینه و هدف : نقیصههای استخوانی، بهویژه در بافت اسفنجی، از چالشهای اصلی درمان ضایعات اسکلتی در پزشکی و دامپزشکی بوده و یافتن راهکاری موثر جهت تسریع و ارتقا کیفی روند ترمیم آنها بسیار حائز اهمیت است. پژوهش حاضر با هدف بررسی اثر داربست نانوکلسیم فسفات دوفازی (BCP) بر القا و هدایت استخوانسازی در نقیصه استخوان ران خرگوش انجام شده است.
مواد و روش کار : در این مطالعه تجربی، تعداد 12 سر خرگوش ماده نژاد نیوزلندی انتخاب شده و در هر دو پای حیوان سوراخی به قطر ۵ میلیمتر در کورتکس قدامی دیافیز استخوان ران ایجاد گردید. سپس سوراخ پای چپ با گرانول نانوکلسیم فسفات دوفازی پر شده (گروه آزمایش) و سوراخ پای راست نیز به عنوان گروه شاهد، فاقد هرگونه ماده پر کننده، باقی ماند. ارزیابیهای رادیوگرافیک در روزهای صفر ، 15، 30، 45 و 60 پس از جراحی انجام شده و نتایج کیفی و کمی بر اساس سیستم نمرهدهی لین و سندهو تجزیه و تحلیل گردید.
نتایج: تشکیل کالوس و پرشدگی نقیصه در گروه آزمایش، زودتر و با شدت بیشتری نسبت به گروه شاهد انجام شده و آزمونهای آماری بیانگر اختلاف معنی دار بین دو گروه مطالعه در روزهای ۴۵ و ۶۰ از نظر میزان ترمیم استخوانی بودند.
بحث و نتیجه گیری : یافتههای حاصله بیانگر آن است که نانوکلسیم فسفات دوفازی با ایجاد بستری مناسب برای عملکرد سلولهای استخوانساز، موجب تسریع روند ترمیم استخوان شده و میتواند به عنوان داربستی مؤثر در بازسازی ضایعات استخوانی مد نظر قرار گیرد.
Background and Purpose: Bone defects, particularly in cancellous bone, represent a major therapeutic challenge in skeletal lesions for both human and veterinary medicine. Developing effective strategies to accelerate and enhance the quality of bone repair is of paramount importance. This study aimed to investigate the osteoinductive and osteoconductive effects of biphasic calcium phosphate (BCP) nanoscaffold in femoral bone defects of rabbits.
Materials and Methods: In this experimental study, 12 female New Zealand white rabbits were selected. A 5-mm diameter cortical defect was created in the anterior diaphysis of both femurs. The left femoral defects were filled with BCP nanogranules (treatment group), while the right femoral defects remained unfilled (control group). Radiographic evaluations were performed at days 0, 15, 30, 45, and 60 post-surgery. Qualitative and quantitative analyses were conducted using the Lane-Sandhu scoring system.
Results: Callus formation and defect filling occurred earlier and more extensively in the treatment group compared to controls. Statistical analyses revealed significant differences in bone healing between groups at days 45 and 60 post-operation (p<0.05).
Conclusion: The findings demonstrate that biphasic calcium phosphate nanoscaffold provides a suitable matrix for osteogenic cell activity, significantly accelerating bone repair. These results suggest BCP as an effective scaffold for bone tissue regeneration in skeletal defects.
1. Ansari, M. Bone tissue regeneration: biology, strategies and interface studies. Progress in biomaterials, 2019, 8(4), 223-237.
2. Arunjaroensuk S, Panmekiate S, Pimkhaokham A. The stability of augmented bone between two different membranes used for guided bone regeneration simultaneous with dental implant placement in the esthetic zone. Int J Oral Maxillofac Implants. 2018;33:206–216. doi: 10.11607/jomi.5492.
3. Boller LA, Shiels SM, Florian DC, Peck SH, Schoenecker JG, Duvall C, Wenke JC, Guelcher SA. Effects of nanocrystalline hydroxyapatite concentration and skeletal site on bone and cartilage formation in rats. Acta Biomater. 2021 Aug;130:485-496.
4. Chu W., Huang Y., Yang C., Liao Y., Zhang X., Yan M., Cui S., Zhao C. Calcium phosphate nanoparticles functionalized with alendronate-conjugated polyethylene glycol (PEG) for the treatment of bone metastasis. Int. J. Pharm. 2017;516:352–363.
5. Curtin C.M., Tierney E.G., McSorley K., Cryan S.A., Duffy G.P., O’Brien F.J. Combinatorial gene therapy accelerates bone regeneration: Non-viral dual delivery of VEGF and BMP2 in a collagen-nanohydroxyapatite scaffold. Adv. Healthc. Mater. 2015;4:223–227.
6. Dahlin C, Obrecht M, Dard M, Donos N. Bone tissue modelling and remodelling following guided bone regeneration in combination with biphasic calcium phosphate materials presenting different microporosity. Clin Oral Implants Res. 2015;26:814–822. doi: 10.1111/clr.12361.
7. Fukuba S, Okada M, Nohara K, Iwata T. Alloplastic bone substitutes for periodontal and bone regeneration in dentistry: current status and prospects. Materials (Basel) 2021;14:1096. doi: 10.3390/ma14051096.
8. Hu Z., Tang Q., Yan D., Zheng G., Gu M., Luo Z., Mao C., Qian Z., Ni W., Shen L. A multi-functionalized calcitriol sustainable delivery system for promoting osteoporotic bone regeneration both in vitro and in vivo. Appl. Mater. Today. 2021;22:100906.
9. Jepsen S, Schwarz F, Cordaro L, Derks J, Hämmerle CH, Heitz-Mayfield LJ, et al. Regeneration of alveolar ridge defects. Consensus report of group 4 of the 15th European Workshop on Periodontology on Bone Regeneration. J Clin Periodontol. 2019;46(Suppl 21):277–286. doi: 10.1111/jcpe.13121.
10. Jia S., Liu Y., Ma Z., Liu C., Chai J., Li Z., Song W., Hu K. A novel vertical aligned mesoporous silica coated nanohydroxyapatite particle as efficient dexamethasone carrier for potential application in osteogenesis. Biomed. Mater. 2021;16:035030.
11. Jung EH, Jeong SN, Lee JH. Augmentation stability and early wound healing outcomes of guided bone regeneration in peri-implant dehiscence defects with L- and I-shaped soft block bone substitutes: a clinical and radiographic study. Clin Oral Implants Res. 2021;32:1308–1317. doi: 10.1111/clr.13830.
12. Kasai H, Bergamo ET, Balderrama ÍD, Imamura K, Witek L, Jalkh EB, Bonfante EA, Inoue K, Coelho PG, Yamano S. The effect of nano hydroxyapatite coating implant surfaces on gene expression and osseointegration. Med Oral Patol Oral Cir Bucal. 2023 Nov 22:26303.
13. Lane, J. M., & Sandhu, H. S. (1987). Current approaches to experimental bone grafting. Orthopedic Clinics of North America, 18(2), 213-225.
14. Lee JH, An HW, Im JS, Kim WJ, Lee DW, Yun JH. Evaluation of the clinical and radiographic effectiveness of treating peri-implant bone defects with a new biphasic calcium phosphate bone graft: a prospective, multicenter randomized controlled trial. J Periodontal Implant Sci. 2023 Aug;53(4):306-317. doi: 10.5051/jpis.2300640032. Epub 2023 Jun 9. Erratum in: J Periodontal Implant Sci. 2024 Jun;54(3):205. doi: 10.5051/jpis.2423032err01. PMID: 37524378; PMCID: PMC10465810.
15. Lee JH, Jung EH, Jeong SN. Augmentation stability of guided bone regeneration for peri-implant dehiscence defects with l-shaped porcine-derived block bone substitute. Materials (Basel) 2021;14:6580. doi: 10.3390/ma14216580.
16. Lee JH, Jung EH, Jeong SN. Profilometric, volumetric, and esthetic analysis of guided bone regeneration with L-shaped collagenated bone substitute and connective tissue graft in the maxillary esthetic zone: a case series with 1-year observational study. Clin Implant Dent Relat Res. 2022;24:655–663. doi: 10.1111/cid.13116.
17. Lee JT, Lee Y, Lee D, Choi Y, Park J, Kim S. Evaluation of the mechanical properties and clinical efficacy of biphasic calcium phosphate-added collagen membrane in ridge preservation. J Periodontal Implant Sci. 2020;50:238–250. doi: 10.5051/jpis.2001080054.
18. LeGeros RZ, Lin S, Rohanizadeh R, Mijares D, LeGeros JP. Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci Mater Med. 2003;14:201–209. doi: 10.1023/a:1022872421333.
19. Merli M, Moscatelli M, Mariotti G, Pagliaro U, Raffaelli E, Nieri M. Comparing membranes and bone substitutes in a one-stage procedure for horizontal bone augmentation. Three-year post-loading results of a double-blind randomised controlled trial. Eur J Oral Implantology. 2018;11:441–452.
20. Mohd Zaffarin, A. S., Ng, S. F., Ng, M. H., Hassan, H., & Alias, E. (2021). Nano-Hydroxyapatite as a Delivery System for Promoting Bone Regeneration In Vivo: A Systematic Review. Nanomaterials, 11(10), 2569.
21. Mondal S., Dorozhkin S.V., Pal U. Recent progress on fabrication and drug delivery applications of nanostructured hydroxyapatite. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2018;10:e1504.
22. Mousavi, Gh., Sharifi, D., Mohajeri, D., Rezaie, A., Mortazavi, P., Soroori, S. and Hesaraki, S. (2010): Effect of Calcium Phosphate Bone Cement and Type I Collagen Mixture on Healing of Segmental Bone Defect in Rabbit Radius. Australian Journal of Basic and Applied Sciences, 4(10): 5144-5153.
23. Mousavi,Gh. and Rezaie, A. (2011): Biomechanical Effects of Calcium Phosphate Bone Cement and Bone Matrix Gelatin Mixture on Healing of Bone Defect in Rabbits. World Applied Sciences Journal, 13(9): 2042-2046.
24. Naenni N, Schneider D, Jung RE, Hüsler J, Hämmerle CH, Thoma DS. Randomized clinical study assessing two membranes for guided bone regeneration of peri-implant bone defects: clinical and histological outcomes at 6 months. Clin Oral Implants Res. 2017;28:1309–1317. doi: 10.1111/clr.12977.
25. Rh Owen G, Dard M, Larjava H. Hydoxyapatite/beta-tricalcium phosphate biphasic ceramics as regenerative material for the repair of complex bone defects. J Biomed Mater Res B Appl Biomater. 2018;106:2493–2512. doi: 10.1002/jbm.b.34049.
26. Sadi, F., Rahimzadeh, R., Amiri, A. K., Veshkini, A., & Sharifi, D. (2011). Radiological Study of Cartilage Graft in Repair of Experimentally Radial Bone Defect in Rabbit.
27. Shamsoddin E, Houshmand B, Golabgiran M. Biomaterial selection for bone augmentation in implant dentistry: a systematic review. J Adv Pharm Technol Res. 2019;10:46–50. doi: 10.4103/japtr.JAPTR_327_18.
28. Tanaka K, Botticelli D, Canullo L, Baba S, Xavier SP. New bone ingrowth into β-TCP/HA graft activated with argon plasma: a histomorphometric study on sinus lifting in rabbits. Int J Implant Dent. 2020;6:36. doi: 10.1186/s40729-020-00236-4.
29. Wulsten, D., Glatt, V., Ellinghaus, A., Schmidt-Bleek, K., Petersen, A., Schell, H., ... & Duda, G. N. (2011). Time kinetics of bone defect healing in response to BMP-2 and GDF-5 characterised by in vivo biomechanics. Eur Cell Mater, 21(2), 177-192.
30. Yamada M, Egusa H. Current bone substitutes for implant dentistry. J Prosthodont Res. 2018;62:152–161. doi: 10.1016/j.jpor.2017.08.010.
31. Yuan H, van Blitterswijk CA, de Groot K, de Bruijn JD. Cross-species comparison of ectopic bone formation in biphasic calcium phosphate (BCP) and hydroxyapatite (HA) scaffolds. Tissue Eng. 2006;12:1607–1615. doi: 10.1089/ten.2006.12.1607.
32. Zhang J.C., Lu H.Y., Lv G.Y., Mo A.C., Yan Y.G., Huang C. The repair of critical-size defects with porous hydroxyapatite/polyamide nanocomposite: An experimental study in rabbit mandibles. Int. J. Oral Maxillofac. Surg. 2010;39:469–477.
33. Zhao R, Yang R, Cooper PR, Khurshid Z, Shavandi A, Ratnayake J. Bone grafts and substitutes in dentistry: a review of current trends and developments. Molecules. 2021;26:3007. doi: 10.3390/molecules26103007.
