اثر مخلوط پروبیوتیک های لاکتیکی بر آسیب های اکسیداتیو ناشی از کلریدآلومینیوم در بافت کلیه موش صحرایی
محورهای موضوعی : میکروبیولوژی
زهرا کشتمند
1
,
مرجان سرخانی
2
1 - گروهزیستشناسی،دانشکدهعلومپایه،واحدتهرانمرکزی،دانشگاهآزاداسلامی،تهران،ایران.
2 - گروه زيست شناسي، واحد تهران مرکزی، دانشگاه آزاد اسلامي، تهران،ایران
کلید واژه: پروبیوتیک, کلریدآلومینیوم, بافت کلیه, استرساکسیداتیو, موش صحرایی,
چکیده مقاله :
زمینه و هدف مطالعه: یکی از مهمترین آلایندههای محیط زیست، فلزات سنگین هستندکه در اندامهای موجودات زنده انباشته شده و در مقادیرکم نیز باعث بروز مسمومیت میشوند. این ترکیبات با تأثیر مستقیم بر مولکولهای زیستی و فعالسازی مسیرهای آپوپتوز، موجب آسیبهای بافتی گسترده میشوند. پروبیوتیک ها با عملکرد و تولید متابولیتهای موثر میتوانند فلزات سنگین را جذب کنند. هدف از این تحقیق بررسی اثر مخلوط پروبیوتیکهای لاکتیکی بر آسیبهای اکسیداتیو ناشی از مواجهه با کلریدآلومینیوم در بافت کلیه موش صحرایی میباشد. مواد و روشها: در این مطالعه تجربی، 21 سر موش صحرایی نر بالغ نژاد ویستار به 3 گروه7 تایی شامل کنترل، دریافتکننده کلریدآلومینیوم ( mg/kg100) ، کلریدآلومینیوم+مخلوط پروبیوتیک (CFU / ml109) تقسیمبندی شدند. القا آلودگی و دریافت مخلوط پروبیوتیک با روش گاواژ انجام شد. بعد از پایان دوره تیمار و تشریح حیوانات، بافت کلیه جهت سنجش برخی ازشاخصهای استرس اکسیداتیو در گروههای مختلف استخراج شد. نتایج: نتایج به دست آمده از این تحقیق نشان داد در گروه دریافت کننده کلریدآلومینیوم افزایش مالون دی آلدهید و کاهش سوپراکسید دیسموتاز، کاتالاز، گلوتاتیون پراکسیداز و ظرفیت تام آنتیاکسیدانی در مقابسه با گروه کنترل به صورت معنیدار نشان داده شد، در حالیکه درگروه تیمار شده با مخلوط پروبیوتیک کاهش معنیدار مالون دیآلدهید و افزایش سوپراکسید دیسموتاز، کاتالاز، گلوتاتیون پراکسیداز و ظرفیت تام آنتی اکسیدانی در مقایسه با گروه آلوده نشان داده شد. نتیجه گیری: با توجه به یافتههای این پژوهش احتمالا، مخلوط پروبیوتیک را میتوان به عنوان یکی از ترکیبات و مکمل های موثر در جهت تعدیل آسیبهای ناشی از آلاینده کلریدآلومینیوم به کار گرفت.
Introduction: One of the most important environmental pollutants are heavy metals, which accumulate in the organs of living organisms and cause poisoning even in small amounts. These compounds cause extensive tissue damage by directly affecting biological molecules and activating apoptosis pathways. Probiotics are living microorganisms that can absorb heavy metals by maintaining the balance of the intestinal microbiota and strengthening the intestinal epithelial barrier, through their function and production of effective metabolites. The aim of this study was to investigate the effect of a mixture of lactic probiotics on oxidative damage caused by exposure to aluminum chloride in rat kidney tissue. Materials and methods: In this experimental study, 21 adult male Wistar rats were divided into 3 groups of 7: control, aluminum chloride recipient (100 mg/kg), aluminum chloride + probiotic mixture (109 CFU/ml). Induction of contamination and receipt of the probiotic mixture was performed by gavage. After the end of the treatment period and dissection of the animals, kidney tissue was extracted to measure some oxidative stress indices in different groups. Results: The results of this study showed that in the group receiving aluminum chloride, there was an significant increase in malondialdehyde and a significant decrease in superoxide dismutase, catalase, glutathione peroxidase, and total antioxidant capacity compared to the control group, while in the group treated with the probiotic mixture, there was a significant decrease in malondialdehyde and an increase in superoxide dismutase, catalase, glutathione peroxidase and total antioxidant capacity compared to the contaminated group. Conclusion: According to the findings of this study, it is likely that the probiotic mixture can be used as one of the effective compounds and supplements to modify the damage caused by the aluminum chloride pollutant.
1. Abd Elnabi, M. K., Elkaliny, N. E., Elyazied, M. M., Azab, S. H., Elkhalifa, S. A., Elmasry, S., Mouhamed, M. S., Shalamesh, E. M., Alhorieny, N. A., Abd Elaty, A. E., Elgendy, I. M., Etman, A. E., Saad, K. E., Tsigkou, K., Ali, S. S., Kornaros, M., Mahmoud, Y. A. (2023). Toxicity of Heavy Metals and Recent Advances in Their Removal: A Review. Toxics, 11 (7), 580. https://doi.org/10.3390/toxics11070580
2. Abdel-Megeed R. M. (2021). Probiotics: a Promising Generation of Heavy Metal Detoxification. Biological trace element research, 199 (6): 2406–2413. https://doi.org/10.1007/s12011-020-02350-1
3. Abdel-Rahim MM, Shahin SA, Mansour AT, Alsaqufi AS, Elshafey AE, Omar AA, El-Sharkawy HA, Mohamed RA, Elhetawy AI(2025 April). The effect of aqueous application of probiotics on growth, heavy metal accumulation, blood biochemistry, and histological alterations of Dicentrarcus labrax. Aquaculture International, 33 (3):1-25. https://doi.org/10.1007/s10499-025-01900-5
4. Abdi-Moghadam, Z., Darroudi, M., Mahmoudzadeh, M., Mohtashami, M., Jamal, A. M., Shamloo, E., & Rezaei, Z. (2023). Functional yogurt, enriched and probiotic: A focus on human health. Clinical nutrition Espen, 57: 575–586. https://doi.org/10.1016/j.clnesp.2023.08.005
5. Ali ,M., Amin ,A., Abbas, Z. (2025 Mar). Efficacy of Lacticaseibacillus rhamnosus probiotic strains in treating chromate induced dermatitis. Scientific Reports, 15 (1):8796.https://doi.org/10.1038/s41598-025-93732-9
6. Al-Kazzaz, F.A., Amer, A.A., Abu El-Naser, I.A. (2025). Assessing the influence of dietary supplementation of Lactobacillus acidophilus on the growth performance, biochemical parameters, antioxidant status, and digestive enzyme activity of whiteleg shrimp (Penaeus vannamei). Damietta Journal Agricultural Sciences, 4 (2):123–135. https://doi.org:10.21608/djas.2025.430274
7. Asad, A., Kirk, M., Zhu, S., Dong, X., & Gao, M. (2025). Effects of Prebiotics and Probiotics on Symptoms of Depression and Anxiety in Clinically Diagnosed Samples: Systematic Review and Meta-analysis of Randomized Controlled Trials. Nutrition reviews, 83 (7): e1504–e1520. https://doi.org/10.1093/nutrit/nuae177
8. Babaei, F., Navidi-Moghaddam, A., Naderi, A., Ghafghazi, S., Mirzababaei, M., Dargahi, L., Mohammadi, G., & Nassiri-Asl, M. (2024). The preventive effects of Saccharomyces boulardii against oxidative stress induced by lipopolysaccharide in rat brain. Heliyon, 10 (9) : e30426. https://doi.org/10.1016/j.heliyon.2024.e30426
9. Bakare, T.A., Abubakar, J., Gulumbe, B.H., Auwal ,AR, Shitu, A., Danjuma ,A.M. (2024). Cardio and neuroprotective effects of naringenin against aluminum chloride-induced oxidative stress in Wistar rats. Avicenna Journal Med Biochemical, 12 (1):19–29. https://doi.org: 10.34172/ajmb.2484
10. Cheraghi, E., Roshanaei, K. (2019). The protective effect of curcumin against aluminum chloride induced oxidative stress and hepatotoxicity in rats. Pharmaceutical and Biomedical Research, 5 (1):11–18.
11. https://doi.org:10.18502/pbr.v5i1.761
12. Dashtbanei, S., & Keshtmand, Z. (2023). A Mixture of Multi-Strain Probiotics (Lactobacillus Rhamnosus, Lactobacillus Helveticus, and Lactobacillus Casei) had Anti-Inflammatory, Anti-Apoptotic, and Anti-Oxidative Effects in Oxidative Injuries Induced By Cadmium in Small Intestine and Lung. Probiotics and antimicrobial proteins, 15 (2), 226–238. https://doi.org/10.1007/s12602-022-09946-0
13. Farooq S (2024 ). A review on pharmacokinetics, mechanism of action and side effects of probiotics. International Journal of Molecular Microbiology,7 (1):39-59.
14. Gao, Y., Tan, R., Wang, Z., Qiang, L., & Yao, H. (2024). The effects of Bacillus subtilis on the immunity, mucosal tissue morphology, immune-related gene transcriptions, and intestinal microbiota in flounder (Paralichthys olivaceus) with two feeding methods: Continuous versus discontinuous feeding. Veterinary immunology and immunopathology, 271: 110742. https://doi.org/10.1016/j.vetimm.2024.110742
15. GolchinA, Ranjbarvan P, Parviz S, Shokati A, Naderi R,Rasmi Y, Kiani S, Moradi F, Heidari F, SaltanatpourZ,AlizadehA. (2023). The role of probiotics in tissue engineering and regenerative medicine. Regenerative medicine, 18 (8):635–57.
16. Hindawy, R. F., Manawy, S. M., Nafea, O. E., Abdelhameed, A. A.,Hendawi, F. F. (2024). Moringa oleifera leaves ethanolic extract counteracts cortical neurodegeneration induced by aluminum chloride in rats. Toxicology research, 13 (2), tfae028. https://doi.org/10.1093/toxres/tfae028
17. Inceu, A. I., Neag, M. A., Catinean, A., Bocsan, C. I., Craciun, C. I., Melincovici, C. S., Muntean, D. M., Onofrei, M. M., Pop, R. M., & Buzoianu, A. D. (2023). The Effects of Probiotic Bacillus Spores on Dexamethasone-Treated Rats. International journal of molecular sciences, 24 (20): 15111. https://doi.org/10.3390/ijms242015111
18. Jomova, K., Alomar, S. Y., Nepovimova, E., Kuca, K., & Valko, M. (2025). Heavy metals: toxicity and human health effects. Archives of toxicology, 99 (1), 153–209. https://doi.org/10.1007/s00204-024-03903-2
19. Latif, A., Shehzad, A., Niazi, S., Zahid, A., Ashraf, W., Iqbal, M. W., Rehman, A., Riaz, T., Aadil, R. M., Khan, I. M., Özogul, F., Rocha, J. M., Esatbeyoglu, T., & Korma, S. A. (2023). Probiotics: mechanism of action, health benefits and their application in food industries. Frontiers in microbiology, 14 :1216674. https://doi.org/10.3389/fmicb.2023.1216674
20. Liu, C., Ma ,N., Feng, Y., Zhou, M., Li, H., Zhang, X., Ma X. (2023). From probiotics to postbiotics: concepts and applications. Animal Research and One Health, 1 (1):92–114.https://doi.org/10.1002/aro2.7
21. Lokman, M., Ashraf, E., Kassab, R. B., Abdel Moneim, A. E., & El-Yamany, N. A. (2022). Aluminum Chloride-Induced Reproductive Toxicity in Rats: the Protective Role of Zinc Oxide Nanoparticles. Biological trace element research, 200 (9): 4035–4044. https://doi.org/10.1007/s12011-021-03010-8
22. Majlesi, M., Shekarforoush, S. S., Ghaisari, H. R., Nazifi, S., Sajedianfard, J., & Eskandari, M. H. (2017). Effect of Probiotic Bacillus Coagulans and Lactobacillus Plantarum on Alleviation of Mercury Toxicity in Rat. Probiotics and antimicrobial proteins, 9 (3): 300–309. https://doi.org/10.1007/s12602-016-9250-x
23. Mansoor ,S., Ali, A., Kour, N., Bornhorst ,J., AlHarbi, K., Rinklebe, J., Abd El Moneim, D., Ahmad, P., Chung ,Y.S. (2023).Heavy metal induced oxidative stress mitigation and ROS scavenging in plants. Plants, 12 (16):3003; https://doi.org/10.3390/plants12163003
24. Mazziotta, C., Tognon, M., Martini, F., Torreggiani, E., Rotondo, J. C. (2023). Probiotics Mechanism of Action on Immune Cells and Beneficial Effects on Human Health. Cells, 12 (1) : 184. https://doi.org/10.3390/cells12010184
25. Nualart, D., Diaz, D., Tapia, J., Quinteros, C., & Vargas-Chacoff, L. (2025). Aluminum chloride (AlCl3) alters the physiological response of rainbow trout. Fish physiology and biochemistry, 51 (3), 84. https://doi.org/10.1007/s10695-025-01497-9
26. Peng, Z., Liao, Y., Yang, W., & Liu, L. (2024). Metal(loid)-gut microbiota interactions and microbiota-related protective strategies: A review. Environment international, 192: 109017. https://doi.org/10.1016/j.envint.2024.109017
27. Porru, S., Esplugues, A., Llop, S., & Delgado-Saborit, J. M. (2024). The effects of heavy metal exposure on brain and gut microbiota: A systematic review of animal studies. Environmental, 348 :123732. https://doi.org/10.1016/j.envpol.2024.123732
28. Saleem, A.A., Elaref, M.Y., Bassiony ,S.M., Abdelnour, S.A, Helal, A.A., Abdel-Monem U.M., Al-Marakby., K.M. (2024). The effect of adding multi-strain probiotics (MSP) on the hematological, immunological and antioxidant parameters of male Saidi sheep. Egyptian Journal Veterinary Sciences, 10: 1–8. https://doi.org :21608/EJVS.2024.294580.2143
29. Schommer, V. A., Vanin, A. P., Nazari, M. T., Ferrari, V., Dettmer, A., Colla, L. M., & Piccin, J. S. (2023). Biochar-immobilized Bacillus spp. for heavy metals bioremediation: A review on immobilization techniques, bioremediation mechanisms and effects on soil. The Science of the total environment, 881: 163385. https://doi.org/10.1016/j.scitotenv.2023.163385.
30. Shabani, M., Hasanpour, E., Mohammadifar, M., Bahmani, F., Talaei, S. A., & Aghighi, F. (2023). Evaluating the Effects of Probiotic Supplementation on Neuropathic Pain and Oxidative Stress Factors in an Animal Model of Chronic Constriction Injury of the Sciatic Nerve. Basic and clinical neuroscience, 14 (3), 375–384. https://doi.org/10.32598/bcn.2022.3772.1
31. Sionek, B., Szydłowska ,A., Jaworska, D., Kołożyn-Krajewska, D.(2025). Benefits of Probiotics—Biodetoxification. Applied Sciences, 15 (10):5297. https://doi.org/10.3390/app15105297
32. Su, X., Narayanan, M., Shi, X., Chen, X., Li, Z., & Ma, Y. (2024). Mitigating heavy metal accumulation in tobacco: Strategies, mechanisms, and global initiatives. The Science of the total environment, 926:172128. https://doi.org/10.1016/j.scitotenv.2024.172128
33. Tahir, I., & Alkheraije, K. A. (2023). A review of important heavy metals toxicity with special emphasis on nephrotoxicity and its management in cattle. Frontiers in veterinary science, 10: 1149720. https://doi.org/10.3389/fvets.2023.1149720
34. Wang, Y., Tang, Y., Li, Z., Hua, Q., Wang, L., Song, X., Tang, C. (2020). Joint toxicity of a multi-heavy metal mixture and chemoprevention in sprague dawley rats. International Journal of Environmental Research and Public Health, 17 (4), 1451. https://doi.org/10.3390/ijerph17041451
35. Waqas W, Yuan Y, Ali S, Zhang M, Shafiq M, Ali W, Chen Y, Xiang Z, Chen R, Ikhwanuddin M, Ma H. (2024). Toxic effects of heavy metals on crustaceans and associated health risks in humans: a review Environmental Chemistry Letters, 22 (3):1391–1411. https://doi.org/10.1007/s10311-024-01717-3
36. Zhao, J., Zhao, F., Yuan, J., Liu, H., & Wang, Y. (2023). Gut microbiota metabolites, redox status, and the related regulatory effects of probiotics. Heliyon, 9 (11), e21431. https://doi.org/10.1016/j.heliyon.2023.e21431.
