Combining Heliostat Solar Energy and Reverse Osmosis: Thermoeconomic Analysis for Power Generation and Freshwater Production
محورهای موضوعی : سیستم های هیبریدی انرژی های تجدیدپذیرSeyyed Masoud Seyyedi 1 , Seyyed Mostafa Ghadami 2
1 - Department of Mechanical Engineering,Ali. C., Islamic Azad University, Aliabad Katoul ,Iran
2 - Department of Electrical Engineering, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul ,Iran,
کلید واژه: Solar energy, Heliostat Reverse Osmosis, Power Generation, Freshwater Production, Thermoeconomic,
چکیده مقاله :
The simultaneous production of electricity and fresh water is one of the needs of human society and the topics of interest for designers of energy systems. In the present work, a heliostat solar farm is combined with a reverse osmosis desalination unit to produce electricity and fresh water. Firstly, thermodynamic analysis is performed to calculate thermodynamic properties of each state including mass, temperature, pressure and enthalpy. Then thermoeconomic analysis is performed to calculate the cost of electricity and fresh water. The effects of design variables (pressure ratio of air compressor, the efficiencies of gas turbine and air compressor and number of heliostats), environmental parameters (air temperature and solar direct normal irradiance) and economic parameters (interest rate and economic life of components) on the profit from the sale of system products (electricity and fresh water) are investigated. The results reveals that the maximum values of profit are 582.5, 841.7 and 1093 $/h for number of heliostats 1800, 2200 and 2600, respectively at . Also, the amount of fresh water produced increases from 166.6 to 194 (16.4% increasing) as goes up from 750 to 910 . The value of profit ascends from 841.7 $/h to 1310 $/h (55.6% increasing) when interest rate decsends from 12% to 10% for n = 25, too
The simultaneous production of electricity and fresh water is one of the needs of human society and the topics of interest for designers of energy systems. In the present work, a heliostat solar farm is combined with a reverse osmosis desalination unit to produce electricity and fresh water. Firstly, thermodynamic analysis is performed to calculate thermodynamic properties of each state including mass, temperature, pressure and enthalpy. Then thermoeconomic analysis is performed to calculate the cost of electricity and fresh water. The effects of design variables (pressure ratio of air compressor, the efficiencies of gas turbine and air compressor and number of heliostats), environmental parameters (air temperature and solar direct normal irradiance) and economic parameters (interest rate and economic life of components) on the profit from the sale of system products (electricity and fresh water) are investigated. The results reveals that the maximum values of profit are 582.5, 841.7 and 1093 $/h for number of heliostats 1800, 2200 and 2600, respectively at . Also, the amount of fresh water produced increases from 166.6 to 194 (16.4% increasing) as goes up from 750 to 910 . The value of profit ascends from 841.7 $/h to 1310 $/h (55.6% increasing) when interest rate decsends from 12% to 10% for n = 25, too
[1] SM. Seyyedi, M. Hashemi-Tilehnoee, M. Sharifpur, Thermoeconomic analysis of a solar-driven hydrogen production system with proton exchange membrane water electrolysis unit, Thermal Science and Engineering Progress, 30 (2022) 101274.
[2] SM. Seyyedi, SM. Ghadami, Integration of a solar heliostat field with humidifier-dehumidifier desalination units to generate electricity and fresh water, Journal of Renewable Energy and Smart Systems Vol. 1, No. 1, 2024: 81-92
[3] A.S.Nafey, M.A.Sharaf, Combined solar organic Rankine cycle with reverse osmosis desalination process: Energy, exergy, and cost evaluations, Renewable Energy 35 (2010) 2571-2580
[4] Hamid Mokhtari, Hossein Ahmadisedigh, Iman Ebrahimi, Comparative 4E analysis for solar desalinated water production by utilizing organic fluid and water, Desalination 377 (2016) 108–122
[5] M. Yari, A.E. Mazareh, A.S. Mehr, A novel cogeneration system for sustainable water and power production by integration of a solar still and PV module, Desalination 398 (2016 Nov 15) 1.
[6] Noorpoor, A., Heidarnejad, P., Hashemian, N. and Ghasemi, A. (2016) ‘A thermodynamic model for energetic performance and optimization of a solar and biomass-fuelled multigeneration system’, Energy Equipment and Systems, Vol. 4, No. 2, pp.281–289.
[7] Arash Nemati, Mohsen Sadeghi, Mortaza Yari, Exergoeconomic analysis and multi-objective optimization of a marine engine waste heat driven RO desalination system integrated with an organic Rankine cycle using zeotropic working fluid, Desalination 422 (2017) 113–123
[8] M. Monnot, G.D. Carvajal, S. Laborie, C. Cabassud, R. Lebrun, Integrated approach in eco-design strategy for small RO desalination plants powered by photovoltaic energy, Desalination (2017 Jun 9).
[9] Yilmaz F. Thermodynamic performance evaluation of a novel solar energy based multigeneration system. Appl Therm Eng 2018;143:429-437. https:// doi.org/10.1016/j.applthermaleng.2018.07.125.
[10] Farsi Aida, Dincer Ibrahim. Development and evaluation of an integrated MED/membrane desalination system. Desalination 2019;463:55–68.
[11] B. Ghorbani, R. Shirmohammadi, M. Mehrpooya, Development of an innovative cogeneration system for fresh water and power production by renewable energy using thermal energy storage system, Sustainable Energy Technologies and Assessments 37 (2020) 100572
[12] Atilio B. Lourenço, Monica Carvalho, Exergoeconomic and exergoenvironmental analyses of an off-grid reverse osmosis system with internal combustion engine and waste heat recovery, Chemical Engineering Journal Advances 4 (2020) 100056
[13] Ghorbani B, Mahyari KB, Mehrpooya M, Hamedi MH. Introducing a hybrid renewable energy system for production of power and fresh water using parabolic trough solar collectors and LNG cold energy recovery. Renew Energy 2020;148:1227-1243. https://doi.org/10.1016/j.renene.2019.10.063.
[14] Mohammadi K, Khaledi MSE, Saghafifar M, Powell K. Hybrid systems based on gas turbine combined cycle for trigeneration of power, cooling, and freshwater: a comparative techno-economic assessment. Sustain Energy Technol Assessments 2020;37:100632. https://doi.org/10.1016/J.SETA.2020.100632.
[15] Atilio Barbosa Lourenço, Monica Carvalho, Exergy, exergoeconomic and exergy-based emission cost analyses of a coconut husk-fired power and desalination plant, Int. J. Exergy, Vol. 32, No. 3, 2020
[16] Kasra Mohammadi, Mohammad Saeed Efati Khaledi, Mohammad Saghafifar, Kody Powell, Hybrid systems based on gas turbine combined cycle for trigeneration of power, cooling, and freshwater: A comparative techno-economic assessment, Sustainable Energy Technologies and Assessments 37 (2020) 100632
[17] Alirahmi SM, Bashiri Mousavi S, Razmi AR, Ahmadi P. A comprehensive techno-economic analysis and multi-criteria optimization of a compressed air energy storage (CAES) hybridized with solar and desalination units. Energy Convers Manag 2021;236:114053. https://doi.org/10.1016/J.ENCONMAN.2021.114053.
[18] Ehsanolah Assareh, Mostafa Delpisheh, Seyed Mojtaba Alirahmi, Sirous Tafi, Monica Carvalho, Thermodynamic-economic optimization of a solar-powered combined energy system with desalination for electricity and freshwater production, Smart Energy 5 (2022) 100062
[19] Yunus Emre Yuksel, Murat Ozturk, and Ibrahim Dincer, “Design and analysis of a new solar hydrogen plant for power, methane, ammonia and urea generation,” International Journal of Hydrogen Energy, vol. 47, pp. 19422–19445, 2022.
[20] Amr S. Abouzied, Sarminah Samad, Azher M. Abed, Mohamed Shaban, Fahad M. Alhomayani, Shirin Shomurotova, Mohammad Sediq Safi, Raymond Ghandour, Yasser Elmasry, Albara Ibrahim Alrawashdeh, Efficient thermal integration model based on a biogas-fired gas turbine cycle (GTC) for electricity and desalination applications; thermo-economic and GA-based optimization, Case Studies in Thermal Engineering 64 (2024) 105492
[21] T. Younos and K. E. Tulou, “Overview of desalination techniques,” Journal of Contemporary Water Research and Education, vol. 132, no. 3, p. 10, 2005.
[22] A. Malek, M.N.A. Hawlader, Design and economics of RO seawater desalination, Desalination 105 (1996) 245–261.
[23] B.L. Pangarkar, M. G. Sane, M. Guddad, Reverse Osmosis and Membrane Distillation for Desalination of Groundwater: A Review, International Scholarly Research Network, ISRN Materials Science, Volume 2011, Article ID 523124, 9 pages, doi:10.5402/2011/523124
[24] Y. Lu, A. Liao, Y. Hu, The design of reverse osmosis systems with multiple-feed and multiple-product, Desalination 307 (2012) 42–50
[25] Yawei Du, Lixin Xie, Jie Liu, Yuxin Wang, Yingjun Xu, Shichang Wang, Multi-objective optimization of reverse osmosis networks by lexicographic optimization and augmented epsilon constraint method, Desalination 333 (2014) 66–81
[26] A.M. Blanco-Marigorta, A. Lozano-Medina, J.D. Marcos, A critical review of definitions for exergetic efficiency in reverse osmosis desalination plants, Energy 137 (2017) 752–760, doi: 10.1016/j.energy.2017.05.136 .
[27] S.M. Seyyedi, M. Hashemi-Tilehnoee, M.A. Rosen, “Exergy and exergoeconomic analyses of a novel integration of a 1000 MW pressurized water reactor power plant and a gas turbine cycle through a superheater”, Annals of Nuclear Energy 115 (2018) 161–172.
[28] Hossein Kianfard, Shahram Khalilarya, Samad Jafarmadar, Exergy and exergoeconomic evaluation of hydrogen and distilled water production via combination of PEM electrolyzer, RO desalination unit and geothermal driven dual fluid ORC, Energy Conversion and Management 177 (2018) 339–349
Renewable Energy and Smart Systems Journal Vol. 2, No. 1, 2025: 1-11 | |||
|
|
| |
journal homepage: https://sanad.iau.ir/journal/res |
|
Combining Heliostat Solar Energy and Reverse Osmosis: Thermoeconomic Analysis for Power Generation and Freshwater Production
Seyyed Masoud Seyyedi1,4,1, Seyyed Mostafa Ghadami2,42 Mozhdeh Karamifard3,4
1Department of Mechanical Engineering, AK.C., Islamic Azad University, Aliabad Katoul, Iran
2Department of Electrical Engineering, AK.C., Islamic Azad University, Aliabad Katoul, Iran
3Department of Physics, AK.C., Islamic Azad University, Aliabad Katoul, Iran
4Energy Research Center, AK.C., Islamic Azad University, Aliabad Katoul, Iran
Article info | Abstract | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Keywords: Solar energy Heliostat Reverse Osmosis Power Generation Freshwater Production Thermoeconomic
| The simultaneous production of electricity and fresh water is one of the needs of human society and the topics of interest for designers of energy systems. In the present work, a heliostat solar farm is combined with a reverse osmosis desalination unit to produce electricity and fresh water. Firstly, thermodynamic analysis is performed to calculate thermodynamic properties of each state including mass, temperature, pressure and enthalpy. Then thermoeconomic analysis is performed to calculate the cost of electricity and fresh water. The effects of design variables (pressure ratio of air compressor, the efficiencies of gas turbine and air compressor and number of heliostats), environmental parameters (air temperature and solar direct normal irradiance) and economic parameters (interest rate and economic life of components) on the profit from the sale of system products (electricity and fresh water) are investigated. The results reveals that the maximum values of profit are 582.5, 841.7 and 1093 $/h for number of heliostats | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Article history: Received: 16 06 2025 Accepted: 24 06 2025
|
| (1) |
| (2) |
| (3) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| (4) |
| (5) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| (6) |
| (7) |
| (8) |
| (9) |
| (10) |
| (11) |
| (12) |
| (13) |
| (14) |
| (15) |
| (16) |
| (17) |
| (18) |
| (19) |
| (20) |
| (21) |
| (22) |
| (23) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
and |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| (24) |
Parameter | Definition | Amount | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Power system | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Ambient temperature | 20 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Ambient pressure | 101.3 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Direct normal irradiance | 850 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Number of heliostats | 2200 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| The area of heliostats | 60 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| The receiver local temperature | 1000 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| The gas turbine inlet temperature | 750 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Heliostat efficiency | 0.71 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Surface emissivity of the receiver | 0.88 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Wind speed | 5 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Compressor pressure ratio | 6 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Gas turbine efficiency | 0.85 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Air compressor efficiency | 0.82 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
RO unit | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Feed water temperature | 25 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Salt rejection percentage | 0.9944 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Seawater salinity | 45000 ppm | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Number of elements | 7 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Price of the pressure vessel | 7000 $ | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Fouling factor | 0.85 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Recovery ratio | 0.30 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Number of pressure vessels | 42 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Each membrane price | 1200 $ | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Element area | 35.4 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Density of fluid | 1020 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Pump efficiency | 0.80 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Element type | FTSW30HR-380 | - | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Economic parameters | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Working hour per year | 3723 hr | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Interest rate | 0.12 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Lifetime of components | 25 year | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Maintenance factor | 1.06 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Salvage percentage | 15 % | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Electrical fraction | 0.05 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Selling price of electricity | 0.12 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Selling price of fresh water | 3 |
Parameter | Value | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 1578 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 29979 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 31557 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 613.3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 184 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 429.3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 3034 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 8.576 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 0.0858 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 2.515 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 841.7 |
Variable (Unit) | Nafey and Sharaf [3] | Kianfard et al. [28] | Present work |
| 7.680 | 8.01 | 7.766 |
| 1131 | 1180 | 1132 |
| 485.9 | 485.9 | 485.9 |
| 340.1 | 340.12 | 340.13 |
| 64180 | 64150 | 64178 |
| 250 | 253 | 252 |
| 0.9944 | 0.9944 | 0.9944 |
| 6850 | 6845 | 6843.9 |
|
| ||
| 800 | 850 | 900 |
|
|
|
|
0.82 | 317.6 | 510.8 | 703.8 |
0.85 | 626.8 | 841.7 | 1056 |
0.88 | 805.3 | 1028 | 1255 |
|
|
|
|
0.79 | 448.4 | 650.8 | 853.0 |
0.82 | 626.8 | 841.7 | 1056 |
0.85 | 710.3 | 931.0 | 1146 |