چالشهای حفاظت میدانی یافتههای باستانشناسی در ایران؛ تحلیل وضعیت موجود و راهکارهای بهبود
محورهای موضوعی : مطالعات میانرشتهای
1 - دانشآموخته دکتری حفاظت و مرمت؛ کارشناس پژوهشکده حفاظت و مرمت آثار تاریخی ـ فرهنگی، تهران.
کلید واژه: حفاظت میدانی, یافتههای باستانشناسی, چالشهای مدیریتی, روشهای بومی, مشارکت جوامع محلی.,
چکیده مقاله :
ایران با دارا بودن بیش از یک میلیون اثر تاریخی ثبتشده، از غنیترین کشورهای جهان در حوزه میراث فرهنگی محسوب میشود. با این حال، حفاظت از یافتههای باستانشناسی در حین کاوشهای میدانی به دلیل چالشهای متعدد مدیریتی، محیطی، فنی و انسانی با مشکلات جدی مواجه است. این پژوهش با روش کیفی و رویکرد توصیفی-تحلیلی، به بررسی این چالشها و ارائه راهکارهای عملی میپردازد. یافتهها نشان میدهد که مهمترین چالشها شامل ضعف برنامهریزی یکپارچه، کمبود بودجه و نیروی متخصص، شرایط اقلیمی نامساعد (مانند شوری خاک و نوسانات دمایی)، روشهای نادرست حفاظت و مستندسازی، و عدم مشارکت جوامع محلی است. بهویژه، بخش عمدهای از آسیبهای واردشده به آثار در فاصله زمانی بین کشف تا انتقال به آزمایشگاهها رخ میدهد. برای بهبود این وضعیت، تدوین استانداردهای ملی حفاظت میدانی مبتنی بر اسناد بینالمللی (مانند منشور ونیز و لندن)، استفاده از فناوریهای دیجیتال برای مستندسازی، بهرهگیری از روشهای بومی سازگار با شرایط اقلیمی، و آموزش نیروهای محلی پیشنهاد میشود. همچنین، ایجاد بانک اطلاعاتی یکپارچه و تقویت همکاری میانرشتهای بین باستانشناسان، حفاظتگران و جوامع محلی ضروری است. این پژوهش بر لزوم تبدیل حفاظت میدانی به بخشی جداییناپذیر از برنامهریزیهای باستانشناسی و تخصیص منابع کافی برای صیانت از میراث فرهنگی ایران تأکید دارد.
Iran, with over one million registered historical sites, is among the richest countries in terms of cultural heritage. However, the in-situ conservation of archaeological findings during field excavations faces significant challenges due to various managerial, environmental, technical, and human factors. This qualitative and descriptive-analytical study examines these challenges and proposes practical solutions. Findings indicate that the most critical issues include fragmented planning, insufficient funding and expertise, adverse climatic conditions (e.g., soil salinity and temperature fluctuations), improper conservation and documentation methods, and lack of local community involvement. Notably, most damage to artifacts occurs between their excavation and transfer to specialized laboratories. To address these issues, the study recommends developing national in-situ conservation standards based on international charters (e.g., Venice and London Charters), adopting digital technologies for documentation, utilizing climate-adapted local methods, and training local communities. Additionally, establishing a comprehensive database and fostering interdisciplinary collaboration among archaeologists, conservators, and local communities are essential. The study emphasizes the need to integrate in-situ conservation into archaeological planning and allocate adequate resources to safeguard Iran’s cultural heritage.
- Introduction
Iran, with over one million registered historical artifacts and thousands of unidentified archaeological sites, ranks among the world's richest nations in cultural heritage (Niknami, 2005). However, the conservation of archaeological findings during excavations faces significant challenges that threaten these invaluable treasures. Within Iran's unique geographical and administrative context, these challenges are exacerbated by climate diversity, financial constraints, and insufficient planning and expertise. The conservation issues can be categorized into four main groups: natural factors (e.g., climate change accelerating artifact deterioration (Nakhaei Ashtari & Correia, 2022)), economic limitations, managerial shortcomings (e.g., lack of integrated databases (Machat & Ziesemer, 2020)), and ethical concerns (e.g., inadequate documentation (Renfrew & Bahn, 1994)). Urban development projects without proper archaeological surveys have destroyed numerous valuable sites annually (Demoule, 2012), while traditional conservation methods and a lack of comprehensive planning have caused irreversible damage (Rodgers, 2007; Johnson, 2002). This study aims to:
- Identify and classify field conservation challenges
- Analyze environmental and human factors affecting heritage degradation
- Develop practical solutions to improve conservation systems
International charters emphasize critical conservation principles. The Venice Charter (1964) established that "conservation must begin at discovery" (Charter, 1964), while the Lausanne Charter (1993) stressed preventive measures and emergency plans (Cleere, 1993). UNESCO (1956) and ICOM (2022) advocate for in-situ conservation and non-invasive methods. The London Principles (2009) promote digital documentation standards (Charter, 2009).
Key international studies include Cronyn's (2003) theoretical foundations and Caple's (2016) field decision-making framework. Recent research focuses on digital methods (Richards, 2002) and underwater conservation (Aznar, 2018). In Iran, studies remain limited, with Ebrahimi (2023) highlighting field challenges like lack of conservation specialists, while Abedi (2016) and Majidi (2007, 2010) addressed specific material conservation.
Despite progress, gaps persist in:
- Developing protocols for organic materials
- Adapting international methods to Iran's conditions
- Establishing standardized field conservation procedures
- Implementing preventive measures for long-term excavations
This research seeks to address these gaps by combining international standards with localized solutions for Iran's archaeological heritage.
- Methodology
This study employs a qualitative approach with a descriptive-analytical framework. The findings are derived from two main sources: a comprehensive review of relevant international literature and documents, as well as the author's field experiences and interviews with active archaeologists and conservation specialists in this field. The research process consists of three key stages:
Identification of global challenges and solutions: First, the study examines various conservation challenges and proposed solutions at the international level.
Analysis of Iranian field practices: Next, it investigates common approaches, challenges, and damages encountered during archaeological excavations in Iran, along with their contributing factors.
Development of practical recommendations: Finally, by synthesizing theoretical foundations, operational standards, comparative analysis of international and national findings, and the author's professional experiences, the study proposes actionable recommendations for improving on-site conservation of archaeological discoveries during excavations.
The methodology combines documentary research with empirical observations to bridge the gap between global conservation standards and local implementation challenges in Iran's archaeological practice.
- Discussion
3.1. The Nature of Archaeological Heritage
According to Article 1 of the Valletta Convention, archaeological heritage includes structures, monuments, groups of buildings, developed sites, movable objects, and their contexts, whether on land or underwater (Council of Europe, 1992). These remains are typically recovered through excavations—a technical process that uncovers and records artifacts, structures, and soil features within their stratigraphic sequence. Recovered objects, along with human remains and associated structures, are not merely archaeological evidence but may also hold sacred significance for contemporary communities. Thus, they possess a dual nature: as part of the knowledge-production process (archaeology) and as material culture meaningful to the public (Caple, 2020).
Archaeological artifacts present unique challenges. Unlike museum collections—where objects are pre-selected for study and preservation—excavations yield fragmented, soil-covered masses that may or may not qualify as "objects" or hold discernible value (Caple & Garlick, 2021).
3.2. Who is a Conservator, and What is In-Situ Conservation?
Conservation seeks to halt an object’s deterioration using reversible chemical or physical methods. Conservators apply expertise in material science, degradation processes, and stabilization techniques to preserve an object’s cultural features with minimal intervention. Activities include examination, documentation, treatment, and preventive care, all guided by ethical principles such as minimal intervention, material compatibility, and thorough documentation (Cronyn, 2003: 10–13).
Archaeological conservators play a pivotal role in transforming physical remains into knowledge. They collaborate with excavators, illustrators, and researchers to clean, stabilize, and record artifacts. In smaller teams, conservators may also handle documentation and analysis, necessitating broad interdisciplinary skills (Viduka, 2012).
3.3. Theoretical and Practical Paradigms of In-Situ Conservation
In situ conservation can be categorized under two paradigms:
|
Component |
Theoretical Paradigm |
Practical Paradigm |
|
Primary Goal |
Philosophical frameworks (ethics, values) |
Technical implementation (materials, techniques) |
|
Focus |
Why conserve? (philosophy, ethics) |
How to conserve? (emergency measures) |
|
Timing |
Pre-excavation (planning) |
During/after discovery |
|
Flexibility |
Low (principles-based) |
High (adapts to conditions) |
|
Key Audience |
Researchers, theorists |
Archaeologists, conservators |
Theoretical approaches include:
- Minimal intervention (Venice Charter, 1964).
- Value-based conservation (Australia ICOMOS, 2013).
- Sustainable conservation (UNESCO, 2003).
Practical approaches encompass:
- Preventive conservation: Environmental control (e.g., humidity management) (ICOM, 2008).
- Emergency stabilization: E.g., consolidating fragile ceramics with acrylic adhesives (Cronyn, 2003).
- Integrated conservation: Aligning policies across international, national, and local levels (Cleere, 1993).
- Community-based conservation: Engaging local knowledge (Germanà, 2021).
Conservation is thus the process of stabilizing unreadable objects into durable information sources, requiring meticulous planning.
3.4. Challenges and Considerations
Five major challenges emerge in field conservation:
- Management and Structural Issues:
- Lack of policy/funding for conservation.
- Inadequate pre-excavation studies or equipment (Greene, 2004).
- Environmental Conditions:
- Rapid post-excavation deterioration due to oxidation, desiccation, or microbial activity (Johnson, 2002).
- Iron sulfides converting to destructive sulfuric acid (Caple, 2016).
- Technical Challenges:
- Debates over intervention levels (Caple, 2012).
- Poor documentation of initial conditions (Kuzminsky & Gardiner, 2012).
- Risks during artifact extraction (Watkinson & Neal, 1998).
- Workforce Shortages:
- Few trained conservators (Matero, 2000).
- Miscommunication between archaeologists and conservators (Pye, 2001).
- Social Factors:
- Limited public awareness/participation.
3.5. Challenges Specific to Iran
Iran faces additional hurdles:
- Management: Underfunding, lack of protocols, and insufficient training.
- Climate: Aridity, salinity, and temperature fluctuations exacerbate deterioration.
- Methods: Use of non-standard materials (e.g., irreversible resins) and poor documentation.
- Workforce: Non-specialists performing conservation tasks.
3.6. Solutions and Recommendations
- Management and Training:
- Develop national conservation standards.
- Mandate conservators in excavation teams.
- Train local communities in preservation.
- Environmental Mitigation:
- Use weather monitoring and nano-material coatings (Ye, 2023).
- Employ traditional materials (e.g., lime nanoparticles) with modern techniques (Ben Chobba et al., 2023).
- Technical Improvements:
- Standardize emergency kits and documentation (ICOM templates).
- Use reversible materials (e.g., Paraloid B72) and non-invasive cleaning (lasers, gels) (Passaretti et al., 2021).
- Community Engagement:
- Workshops, local employment, and cultural festivals to foster stewardship.
Effective in-situ conservation requires balancing theoretical ethics with practical adaptability. Addressing Iran’s challenges demands integrated strategies, from policy reform to community involvement, ensuring archaeological heritage endures as both knowledge and cultural legacy.
- Conclusion
This study examined field conservation challenges for archaeological findings in Iran, revealing multifaceted issues rooted in managerial, environmental, technical, human, and social factors. Despite possessing over one million registered historical artifacts and thousands of unidentified sites, Iran faces significant difficulties in protecting these treasures during excavations.
Key challenges identified include:
- Fragmented management systems
- Inadequate funding and resources
- Shortage of trained specialists
- Harsh climatic conditions
- Improper conservation/documentation methods
- Lack of local community involvement
These factors collectively cause irreversible damage to artifacts between discovery and laboratory transfer.
The study proposes:
1) A national conservation framework based on international charters (Venice, London), mandating:
Conservation specialists' participation in all excavation phases
Standardized protocols for documentation, cleaning, stabilization, and transport
2) Development of region-specific methods:
Nano-coatings for humid areas
Low-cost temperature control (e.g., temporary vegetation covers) in arid zones
3) Community engagement through:
Local training programs
Participatory conservation initiatives
4) Technological integration:
Digital documentation (photogrammetry, laser scanning)
Reversible stabilization materials
Unified archaeological database
Effective conservation requires interdisciplinary collaboration among archaeologists, conservators, environmental scientists, and local communities. Success depends on national commitment, adequate resource allocation, and policy reforms to prioritize field conservation in archaeological planning. Only through such comprehensive approaches can Iran's archaeological heritage be preserved as both scientific resources and cultural identity for future generations.
Key recommendations emphasize adaptive strategies combining international standards with localized solutions, technological innovation, and community participation to address Iran's unique conservation challenges.
ابراهیمی، افشین (۱۴۰۲). طرح پژوهشی "تجارب و توصیههای حفاظتی در محوطههای کاوش". تهران، پژوهشگاه میراث فرهنگی، منتشر نشده.
استنلی پرایس، نیکلاس (۱۳۷۷). حفاظت و مرمت در کاوشهای باستان شناسی ترجمه میرمحسن موسوی. تهران. ناشر: دانشگاه هنر و پژوهشکده حفاظت و مرمت آثار تاریخی ـ فرهنگی.
ادارکی، میلاد، خدنگ، امیرحسین (۱۳۹۶). استفاده از عصاره های طبیعی گیاهان به عنوان مهارکننده زیست سازگار خوردگی فلزات در فرآیند اسیدشویی. پنجمین کنفرانس بین المللی نوآوری های اخیر در شیمی و مهندسی شیمی، تهران.
Aznar, M. J. (2018). In situ preservation of underwater cultural heritage as an international legal principle. Journal of Maritime Archaeology, 13(1), 67-81. https://doi.org/10.1007/s11457-018-9192-4
Ben Chobba, M., L. Weththimuni, M., Messaoud, M., Urzi, C., Maalej, R., & Licchelli, M. (2023). Silver Nanoparticles in the Cultural Heritage Conservation. IntechOpen. https://doi.org/10.5772/intechopen.109184
Burgos-Ruiz, M., Elert, K., Ruiz-Agudo, E., Cölfen, H., & Rodriguez-Navarro, C. (2023). Silica-Functionalized Nanolimes for the Conservation of Stone Heritage. Small (Weinheim an der Bergstrasse, Germany), 19(33), e2300596.
https://doi.org/10.1002/smll.202300596
Campana, S., & Remondino, F. (2008). Fast and detailed digital documentation of archaeological excavations and heritage artifacts.
Caple, C. (1999) ‘The Cathedral Doors’, Durham Archaeological Journal 14-15: 131-140. https://durham-repository.worktribe.com/output/1417675
Caple, C. (2012). Conservation skills: judgement, method and decision making. Routledge. https://doi.org/10.4324/9780203086261
Caple, C. (2016). Introduction to Preservation in Situ. Routledge.
Caple, C. (2020). Introduction: The challenges of archaeological conservation. In Studies in Archaeological Conservation (pp. 3-28). Routledge.
Caple, C., & Garlick, V. (Eds.). (2021). Studies in Archaeological Conservation. London: Routledge.
Charter, L. (2009). The London Charter for the computer-based visualisation of cultural heritage. Online at: www.londoncharter. org.
Charter, V. (1964). International charter for the conservation and restoration of monuments and sites. Venice, Italy.
Chen, X., Zheng, B., Zhou, S., Shi, C., Liang, Y., & Hu, L. (2024). Development and application of intelligent coating technology: a review. Coatings, 14(5), 597.
Cleere, H. (1993). The Charter for the Protection and Management of the Archaeological Heritage. Antiquity, 67(255), 402-405.
https://doi.org/10.1017/S0003598X0004549X
Counsuil of Europe. (1992). Convention for the Protection of the Archaeological Heritage of Europe (revised) (Valletta, 1992)
Cronyn, J. M. (2003). Elements of archaeological conservation. Routledge.
Demoule, J. P. (2012). Rescue archaeology: a European view. Annual Review of Anthropology, 41(1), 611-626.
https://doi.org/10.1146/annurev-anthro-092611-145854
Gelbrich, J., Kretschmar, E. I., Lamersdorf, N., Militz, H., Saheb, M., Neff, D., ... & MacLeod, I. (2012). Conservation and Management of Archaeological Sites. D. Gregory, & H. Matthiesen (Eds.). Routledge.
Germanà, M. L. (2021). Ethics, use, and inclusion in managing archaeological built heritage: the relationship between experts and visitors/users. Encyclopedia of global archaeology. Springer Nature, Cham.
Greene, V. (2004). Caring for the Past: Issues in Conservation for Archaeology and Museums.
Hester, T. R., Shafer, H. J., & Feder, K. L. (2016). Field methods in archaeology. Routledge.
ICOMOS CIF. (2024). 40th anniverdary symposium, study tour and research day. Available at: https://cif.icomos.org/icomos-cif-40th-anniversarys-2024-symposium-and-study-tour-in-venice/
International Commission on Education for the Twenty-first Century. (1996). Learning: the treasure within; report to UNESCO of the International Commission on Education for the Twenty-first Century (highlights). Available:
https://unesdoc.unesco.org/ark:/48223/pf0000109590
Jo, E., Mackay, R., Murai, M., & Therivel, R. (2022). Guidance and toolkit for impact assessments in a world heritage context. UNESCO Publishing.
Johnson, J. S. (2002). David Watkinson and Virginia Neal, First Aid for Finds. Journal of the American Institute for Conservation.
Karl, R. (2018). Against retention in situ: How to best preserve archaeology for'future generations'?.
Kars, H., & van Heeringen, R. M. (2006, December). Preserving archaeological remains in situ. In Proceedings of the 3rd conference (Vol. 7, p. 9).
Kuzminsky, S. C., & Gardiner, M. S. (2012). Three-dimensional laser scanning: potential uses for museum conservation and scientific research. Journal of Archaeological Science, 39(8), 2744-2751. https://doi.org/10.1016/j.jas.2012.04.020
Lesh, J. P. (2017). “A Regional Conservation Manifesto”, The Burra Charter and the Australian Re-invention of Urban Heritage Management, ca. 1975–1985. International Journal of Regional and Local History, 12(2), 120–133.
https://doi.org/10.1080/20514530.2017.1400719
Machat, C., & Ziesemer, J. (2020). Heritage at risk world report 2016-2019 on monuments and sites in danger. hendrik Bäßler verlag.
Manders, M. (2008). In Situ Preservation:‘the preferred option’. Museum International, 60(4), 31-41.
https://doi.org/10.1111/j.1468-0033.2008.00663.x
Matero, F. (2000). Ethics and Policy in Conservation. Journal of the American Institute for Conservation, 39(2), 197–210. https://doi.org/10.2307/3179962
Matero, F. (2006). Making archaeological sites: Conservation as interpretation of an excavated past. Of the Past, for the Future: integrating Archaeology and Conservation, 55-63.
Meister, N. B. (2019). A guide to the preventive care of archaeological collections. Advances in Archaeological Practice, 7(3), 267-273.
Nakhaei Ashtari, M., & Correia, M. (2022). Assessment of vulnerability and site adaptive capacity to the risk of climate change: the case of Tchogha Zanbil World Heritage earthen site in Iran. Journal of Cultural Heritage Management and Sustainable Development, 12(2), 107-125.
https://doi.org/10.1108/JCHMSD-06-2021-0108
Niknami, K. A. (2005). Iran: archaeological heritage in crisis: developing an effective management system for archaeology. journal of Cultural Heritage, 6(4), 345-350. https://doi.org/10.1016/j.culher.2005.02.005
Ortmann, N., McKinnon, J. F., & Richards, V. (2010). In-situ preservation and storage: Practitioner attitudes and behaviours. Journal of the Australasian Institute for Maritime Archaeology, The, 34, 27-44.
Passaretti, A., Cuvillier, L., Sciutto, G., Guilminot, E., & Joseph, E. (2021). Biologically derived gels for the cleaning of historical and artistic metal heritage. Applied sciences, 11(8), 3405.
PEDELI, C., & Pulga, S. (2013). Conservation Practices on Archaeological Excavation. Principles and methods. Los Angeles: The Getty Conservation Institute.
Pye, E. (2001). Caring for the past: issues in conservation for archaeology and museums. (No Title).
Renfrew, C., & Bahn, P. G. (1994). Archaeology: theories, methods and practice. Thames and Hudson.
Richards, J. D. (2002). Digital preservation and access. European journal of archaeology, 5(3), 343-366. https://doi.org/10.1179/eja.2002.5.3.343
Rodgers, B. A. (2007). The archaeologist's manual for conservation: a guide to non-toxic, minimal intervention artifact stabilization. Springer Science & Business Media.
Sease, C. (1981). The case against using soluble nylon in conservation work. Studies in Conservation, 26(3), 102-110.
Sease, C. (1994). A conservation manual for the field archaeologist. ISD.
UNESCO. (1956). Directions on archaeological probing and excavations. UNESCO Database of National Cultural Heritage Laws.
UNESCO. (2003). Convention for the safeguarding of the intangible cultural heritage. https://ich.unesco.org/
Viduka, A. (2012). Conservation and Finds Handling. Training Manual for UNESCO Foundation Course on the Protection and Management of Underwater Cultural Heritage in Asia and the Pacific, by M Manders and C. Underwood, 2-26.
Watkinson, D., & Neal, V. (1998). First aid for finds. London: Rescue/UKIC Archaeology Section.
Ye, N. (2023). [Retracted] Wireless Intelligent Sensor Network in Dynamic Environmental Monitoring of Archaeological Excavation Site. Journal of Sensors, 2023(1), 1667338.
