کاربرد هوش مصنوعی در سلامت روان
محورهای موضوعی : روانشناسی و مشاوره
1 - دانشگاه آزاد اسلامی واحد ابهر
کلید واژه: سلامت روان, هوش مصنوعی, روانشناسی, یادگیری ماشین,
چکیده مقاله :
سلامت روان یک نگرانی مهم جهانی است که تأثیر قابلتوجهی بر افراد، جوامع و اقتصاد دارد. هوش مصنوعی بهعنوان یک فنآوری تحول جدی را در مراقبت از سلامت روان ایجاد نموده و همه زمینههای فرایند روانشناسی از تشخیص تا ارائه مداخلات درمانی را تحت تأثیر قرار داده است. راهحلهای مبتنی بر هوش مصنوعی در سلامت روان، با بهرهگیری از هوش مصنوعی و یادگیری ماشین، برای رفع چالشهای دسترسی و هزینه در مراقبتهای سلامت روان ارائهشدهاند. در این مقاله استفاده از هوش مصنوعی در مراقبتهای بهداشتی روانی، روندهای فعلی، ملاحظات اخلاقی و جهتگیریهای آینده آن بررسی و تحقیقات اخیر، نمونههای کاربردی هوش مصنوعی در سلامت روان و ملاحظات اخلاقی، چارچوبهای نظارتی و روندهای تحقیق و توسعه مورد تجزیهوتحلیل قرارگرفته است. ادغام هوش مصنوعی در مراقبت و درمان سلامت روان نشاندهنده امیدواری در مراقبتهای بهداشتی است. تحقیقات و برنامههای هوشمند در زمینههای مختلف مانند تشخیص زودهنگام اختلالات سلامت روان، برنامههای درمانی شخصی و درمانگران مجازی باوجود پیشرفتهای زیاد با چالشهای اخلاقی مربوط به حریم خصوصی، کاهش تعصب و حفظ محرمانگی در درمان مواجه میباشند ازاینرو چارچوبهای نظارتی روشن، اعتبارسنجی شفاف مدلهای هوش مصنوعی و اجرای مسئولانه و اخلاقی ضروری است. در این مقاله با پرداختن به چالشهای فعلی و شکلدهی مناسب جهتگیریهای آینده، امکان استفاده از هوش مصنوعی برای افزایش دسترسی، کارآمدی و اخلاقی بودن مراقبتهای روانی بررسی و راهکارهای لازم ارائهشده است.
Mental health has emerged as a critical global priority, profoundly impacting individuals, societies, and economies. Artificial Intelligence (AI) has driven a transformative shift in mental health care, reshaping processes ranging from diagnosis to therapeutic interventions. AI-powered solutions leveraging machine learning and predictive analytics are increasingly proposed to address systemic challenges such as limited accessibility, high costs, and inefficiencies in mental health services. This article comprehensively examines the integration of AI into mental health care, focusing on its current applications, ethical implications, and future potential. Key areas of analysis include recent advancements in AI-driven research, practical implementations (e.g., early disorder detection, personalized treatment plans, and virtual therapeutic assistants), and the ethical and regulatory challenges inherent to this rapidly evolving field. While AI demonstrates significant promise in enhancing care quality and scalability through tools like predictive risk modeling and chatbot-based support it also raises critical concerns regarding data privacy, algorithmic bias, and the preservation of patient confidentiality. To ensure responsible adoption, this article emphasizes the urgent need for transparent validation of AI models, robust regulatory frameworks, and ethical guidelines that prioritize equity and accountability. By addressing these challenges, AI has the potential to revolutionize mental health care by improving accessibility, optimizing resource efficiency, and fostering ethically grounded innovations. Finally, this work proposes actionable recommendations for stakeholders including policymakers, clinicians, and technologists to collaboratively shape a future where AI-driven solutions complement human expertise while safeguarding patient trust and well-being.
Abreu J.S. (2021). Founding fathers of artificial intelligence, Quidgest, https://quidgest.com/en/blog-en/ai-founding-fathers/, Accessed 29 October 2024.
Affectiva, humanizing technology to bridge the gap between humans and machines, Affectiva, 〈https://www.affectiva.com/〉, 2017, (Accessed 31 October 2024).
Agarwal R., Bjarnadottir M., L. Rhue, et al. (2023). Addressing algorithmic bias and the perpetuation of health inequities: an AI bias aware framework, Health Policy Technol. 12 (1), 100702, https://doi.org/10.1016/j.hlpt.2022.100702.
Ali O. Abdelbaki W., Shrestha A., Elbasi E., Alryalat M.A.A., Dwivedi Y.K, (2023). A systematic literature review of artificial intelligence in the healthcare sector: benefits, challenges, methodologies, and functionalities, J. Innov. Knowl. 8 (1) 100333, https://doi.org/10.1016/j.jik.2023.100333.
Alowais S.A., Alghamdi S.S., Alsuhebany N., et al. (2023), Revolutionizing healthcare: the role of artificial intelligence in clinical practice, BMC Med. Educ. 23 (689), https://doi.org/10.1186/s12909-023-04698-z.
Anxiety Canada, MindShift™ CBT, Anxiety Canada, 〈https://www.anxietycan ada.com/resources/mindshift-cbt/〉, 2023, (Accessed 31 October 2024).
Anyoha R. (2017). The history of artificial intelligence, Science in the news, https://sitn.hms.harvard.edu/flash/2017/history-artificial-intelligence/, Accessed 29 October 2024.
Arias D., Saxena S.& Verguet S. (2022). Quantifying the global burden of mental disorders and their economic value, eClinicalMedicine 54,101675, https://doi.org/10.1016/j.eclinm.2022.101675.
Bassett C., The computational therapeutic: exploring Weizenbaum’s ELIZA as a history of the present (2018). AI Soc. 34 (4) 803–812, https://doi.org/10.1007/s00146-018-0825-9.
Bajwa J., Munir U., Nori A. & Williams B. (2021) Artificial intelligence in healthcare: transforming the practice of medicine, Future Healthc. J. 8 (2), e188–e194,https://doi.org/10.7861/fhj.2021-0095.
Basil A., ELIZA: The chatbot who revolutionised human-machine interaction (an introduction), Nerd for Tech. 〈https://medium.com/nerd-for-tech/eliza-the-chatbot-who-revolutionised-human-machine-interaction-an-introduction-582a7581f91c, 2021, (Accessed 29 October 2023).
Bekele E., Zheng Z., Swanson A., Crittendon J., Warren Z. N. (2013). Sarkar, understanding how adolescents with autism respond to facial expressions in virtual reality environments, IEEE Trans. Vis. Comput. Graph. 19 (4),711–720, https://doi.org/10.1109/tvcg.2013.42.
Bendig E., Erb B., Schulze-Thuesing L., Baumeister H. (2019). The next generation: chatbots in clinical psychology and psychotherapy to foster mental health – a scoping review, Verhaltenstherapie 32 (Suppl. 1) S64–S76, https://doi.org/10.1159/000501812.
Better Help, Professional counseling with a licensed therapist, Betterhelp.com. 〈https://www.betterhelp.com/〉, 2013, (Accessed 31 October 2024).
Blackwell S.E., Heidenreich T., Cognitive behavior therapy at the crossroads, Int.J. Cogn. Ther. 14 (1) (2021) 1–22, https://doi.org/10.1007/s41811-021-00104-y.
Bohr A., Memarzadeh K., The rise of artificial intelligence in healthcare applications, Artif. Intell. Healthc. 1 (1) (2020) 25–60, https://doi.org/10.1016/B978-0-12-818438-7.00002-2.
Borna S., Haider C.R., Maita K.C., et al. (2023). A review of voice-based pain detection in adults using artificial intelligence, Bioengineering 10 (4),500, https://doi.org/10.3390/bioengineering10040500.
Bouhouita-Guermech S., Gogognon P. & B´elisle-Pipon J.C. (2023). Specific challenges posed by artificial intelligence in research ethics, Front. Artif. Intell. 6 1149082, https://doi.org/10.3389/frai.2023.1149082.
Braun M.M. (2005). Dialectical behavior therapy: new frontiers in practice, in: D. Wedding (Ed.), Psyccritiques, 50, https://doi.org/10.1037/051667.
Briot K., Pizano A., Bouvard M., Amestoy A. (2021). New technologies as promising tools for assessing facial emotion expressions impairments in ASD: a systematic review, Front. Psychiatry 12,634756, https://doi.org/10.3389/fpsyt.2021.634756. Calm, Experience calm, Calm. 〈https://www.calm.com/〉, 2019, (Accessed 31 October 2024).
Carreiro S., Taylor M., Shrestha S., Reinhardt M., Gilbertson N. (2021). Indic P., Realize, analyze, engage (RAE): a digital tool to support recovery from substance use disorder, J. Psychiatry Brain Sci. 6, e210002, https://doi.org/10.20900/jpbs.20210002. CDC, Health insurance portability and accountability act of 1996 (HIPAA), Centers for Disease Control and Prevention, Published, 2022. Accessed 1 November 2024, 〈https://www.cdc.gov/phlp/publications/topic/hipaa.html〉.
Center for Devices and Radiological Health, Artificial Intelligence and Machine Learning in Software. U.S. Food and Drug Administration, Published, 2021.Accessed 1 November 2024, 〈https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device〉.
Cerebral, The Cerebral Way. cerebral.com, 〈https://cerebral.com/〉, 2023, (Accessed 31 October 2024). Chekroud A.M., Bondar J., Delgadillo J. & et al. (2021). The promise of machine learning in predicting treatment outcomes in psychiatry, World Psychiatry 20 (2), 154–170, https://doi.org/10.1002/wps.20882.
