Effect of Hydroalcoholic Extract of Malva sylvestris on Milk Quality and Fatty Acid Profile and Blood Biochemical Parameters in the Lactating Najdi Goats
محورهای موضوعی :H. Noori Noroozi 1 , T. Mohammadabadi 2 , M. Chaji 3
1 - Department of Animal Science, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Khuzestan, Iran
2 - Department of Animal Science, Faculty of Animal Science and Food Technology, Ramin Agricultural and Natural Resources University, Mollasani, Ahvaz, Iran
3 - Department of Animal Science, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Khuzestan, Iran
کلید واژه: atherogenicity index, hydroalcoholic extract, Malva sylvestris, milk fatty acid profile, thrombogenicity index,
چکیده مقاله :
This study evaluated the effects of different levels of hydroalcoholic extract of Malva sylvestris (MHE) supplementation on milk production, composition, fatty acid characteristics, microbial load, antioxidant activity, and blood biochemical parameters in Najdi dairy goats. Twelve goats with an average weight of 26 kg in early lactation were divided into three groups: 1) control group (basal diet), 2) treatment group one (basal diet+0.2% MHE), and 3) treatment group two (basal diet+0.4% MHE). The MHE was prepared using 70% ethanol from dried and ground Malva sylvestris. The experiment lasted for 37 days, which included a 7-day adaptation period and a 30-day experimental period. Daily milk production was recorded, and milk samples were analyzed weekly. At the end of the experiment, the milk and blood parameters, fatty acid profiles, microbial load, and antioxidant capacity were evaluated. The results indicated that supplementa-tion with MHE significantly increased daily milk production, antioxidant activity of the milk, short-chain fatty acids (SCFA), atherogenic indices (AI), thrombotic indices (TI), and milk density. Conversely, micro-bial load and various fatty acid ratios, including hypocholesterolemic to hypercholesterolemic fatty acids, significantly decreased (P<0.05). Parameters such as milk protein, lactose, glucose, and blood lipids were not significantly affected (P>0.05), although high-density lipoprotein (HDL) levels varied among treat-ments. Notably, fatty acids C4, C6, C8:1, C15:1, and C18:3 showed significant differences (P<0.05). This study concluded that MHE supplementation at a concentration of 0.2% enhances milk production, antioxi-dant activity, and short-chain fatty acids in milk while simultaneously reducing milk microbial load in Najdi goats.
This study evaluated the effects of different levels of hydroalcoholic extract of Malva sylvestris (MHE) supplementation on milk production, composition, fatty acid characteristics, microbial load, antioxidant activity, and blood biochemical parameters in Najdi dairy goats. Twelve goats with an average weight of 26 kg in early lactation were divided into three groups: 1) control group (basal diet), 2) treatment group one (basal diet+0.2% MHE), and 3) treatment group two (basal diet+0.4% MHE). The MHE was prepared using 70% ethanol from dried and ground Malva sylvestris. The experiment lasted for 37 days, which included a 7-day adaptation period and a 30-day experimental period. Daily milk production was recorded, and milk samples were analyzed weekly. At the end of the experiment, the milk and blood parameters, fatty acid profiles, microbial load, and antioxidant capacity were evaluated. The results indicated that supplementa-tion with MHE significantly increased daily milk production, antioxidant activity of the milk, short-chain fatty acids (SCFA), atherogenic indices (AI), thrombotic indices (TI), and milk density. Conversely, micro-bial load and various fatty acid ratios, including hypocholesterolemic to hypercholesterolemic fatty acids, significantly decreased (P<0.05). Parameters such as milk protein, lactose, glucose, and blood lipids were not significantly affected (P>0.05), although high-density lipoprotein (HDL) levels varied among treat-ments. Notably, fatty acids C4, C6, C8:1, C15:1, and C18:3 showed significant differences (P<0.05). This study concluded that MHE supplementation at a concentration of 0.2% enhances milk production, antioxi-dant activity, and short-chain fatty acids in milk while simultaneously reducing milk microbial load in Najdi goats.
Aazami M.H., Tahmasbi A.M., Ghaffari M., Naserian A.A., Valizadeh R. and Ghaffari A. (2013). Effects of saponins on rumen fermentation, nutrients digestibility, performance, and plasma metabolites in sheep and goat kids. Ann. Res. Rev. Biol. 3(4), 596-607.
Abbas H. (2019). Effect of dietary pomegranate peel (Punica granatum) supplementation on milk production and quality of Labneh of Friesian dairy cows. J. Anim. Poult. Prod. 10(12), 395-398.
Abdel-Aziz S., El-Esawi M., Hazaa M., Abdel-Aziz H.Y. and Hassan M.G. (2021). Antibacterial potential of pomegranate peel extracts on Escherichia coli isolated from Benha hospital in Egypt. Benha J. Appl. Sci. 6(3), 61-64.
Abdelmalek Y.B., Essid I., Smeti S. and Atti N. (2018). The antioxidant and antimicrobial effect of Rosmarinus officinalis L. distillation residues’ intake on cooked sausages from ewes fed linseed. Small Rumin. Res. 168, 87-93.
Akbağ H.I., Savaş T. and Karagül Yüceer Y. (2022). The effect of fenugreek seed (Trigonella foenum-graecum) supplementation on dairy goats' performance and milk yield characteristics. Arch. Anim. Breed. 65(4), 385-395.
Akinmoladun A.C., Adetuyi A.R., Komolafe K. and Oguntibeju O.O. (2020). Nutritional benefits, phytochemical constituents, ethnomedicinal uses, and Miracle fruit plant biological properties (Synsepalum dulcificum Shumach. & Thonn. Daniell). Heliyon. 6(12), 1-8.
Amato R., Oteri M., Chiofalo B., Zicarelli F., Musco N., Sarubbi F. and Di Bennardo F. (2024). Diet supplementation with hemp (Cannabis sativa L.) inflorescences: Effects on quanti-qualitative milk yield and fatty acid profile on grazing dairy goats. Vet. Q. 44(1), 1-8.
Asbaghi O., Fouladvand F., Moradi S., Ashtary-Larky D., Choghakhori R. and Abbasnezhad A. (2020). Effect of green tea extract on lipid profile in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Diabetes Metab. Syndr. Clin. Res. Rev. 14(4), 293-301.
Aschenbach J.R., Kristensen N.B., Donkin S.S., Hammon H.M. and Penner G.B. (2010). Gluconeogenesis in dairy cows: The secret of making sweet milk from sourdough. IUBMB Life 62(12), 869-877.
Ascherio A., Katan M.B., Zock P.L., Stampfer M.J. and Willett W.C. (1999). Trans fatty acids and coronary heart disease. N. Engl. J. Med. 340(25), 1994-1998.
Avila-Nava A., Medina-Vera I., Toledo-Alvarado H., Corona L. and Márquez-Mota C.C. (2023). Supplementation with antioxidants and phenolic compounds in ruminant feeding and its effect on dairy products: a systematic review. J. Dairy Res. 90(3), 216-226.
Babiker E.E., Juhaimi F.A., Ghafoor K. and Abdoun K.A. (2017). Comparative study on the feeding value of Moringa leaves as a partial replacement for alfalfa hay in ewes and goats. Livest. Sci. 195, 21-26.
Bones U.A., Flach K.A., da Rosa G.M. and da Costa Junior J.A. (2022). Comparative evaluation between empirical and scientific knowledge about the use of medicinal plants and their compounds. Rev. Gestão Social Ambient. 16(2), 2961-2961.
Brito L.F., Silva F.G., Melo A.L., Caetano G.C., Torres R.A., Rodrigues M.T. and Menezes G.R. (2011). Genetic and environmental factors influence the production and quality of milk of Alpine and Saanen goats. Genet. Mol. Res. 10(4), 3794-3802.
Çam M., Hışıl Y. and Durmaz G. (2009). Classification of eight pomegranate juices based on antioxidant capacity measured by four methods. Food Chem. 112(3), 721-726.
Chen V.L., Du X., Chen Y., Kuppa A., Handelman S.K., Vohnoutka R.B. and Halligan B. (2021). Genome-wide association study of serum liver enzymes implicates diverse metabolic and liver pathology. Nat. Commun. 12(1), 816-825.
Chilliard Y., Glasser F., Ferlay A., Bernard L., Rouel J. and Doreau M. (2007). Diet, rumen biohydrogenation, and nutritional quality of cow and goat milk fat. Eur. J. Lipid Sci. Technol. 109(8), 828-855.
Cieslak A., Kowalczyk J., Czauderna M., Potkanski A. and Szumacher-Strabel M. (2010). Enhancing unsaturated fatty acids in ewe's milk by feeding rapeseed or linseed oil. Czech J. Anim. Sci. 55(11), 496-504.
Colakoglu H., Polat I., Vural M., Kuplulu S., Pekcan M., Yazlik M. and Baklaci C. (2017). Associations between leptin, body condition score, and energy metabolites in Holstein primiparous and multiparous cows from 2 to 8 weeks postpartum. Rev. Med. Vet. 168(4), 93-101.
Correddu F., Lunesu M.F., Buffa G., Atzori A.S., Nudda A., Battacone G. and Pulina G. (2020). Can agro-industrial by-products rich in polyphenols be advantageously used in the feeding and nutrition of dairy small ruminants? Animal. 10(1), 131-139.
Craninx M., Steen A., Van Laar H., Van Nespen T., Martin-Tereso J., De Baets B. and Fievez V. (2008). Effect of lactation stage on the odd-and branched-chain milk fatty acids of dairy cattle under grazing and indoor conditions. J. Dairy Sci. 91(7), 2662-2677.
Demir Y., Durmaz L., Taslimi P. and Gulçin İ. (2019). Antidiabetic properties of dietary phenolic compounds: Inhibition effects on α‐amylase, aldose reductase, and α‐glycosidase. Biotechnol. Appl. Biochem. 66(5), 781-786.
De Oliveira C.V., Silva T.E., Batista E.D., Rennó L.N., Silva F.F., de Carvalho I.P. and Detmann E. (2020). Urea supplementation in rumen and post-rumen for cattle fed a low-quality tropical forage. Br. J. Nutr. 124(11), 1166-1178.
DePeters E., Taylor S., Finley C. and Famula T. (1987). Dietary fat and nitrogen composition of milk from lactating cows. J. Dairy Sci. 70(6), 1192-1201.
Dhiman T.R., Nam S.H. and Ure A.L. (2005). Factors affecting conjugated linoleic acid content in milk and meat. Crit. Rev. Food Sci. Nutr. 45(6), 463-482.
El-Nor S.A., Khattab H., Al-Alamy H., Salem F. and Abdou M. (2007). Effect of some medicinal plant seeds in the rations on the productive performance of lactating buffaloes. Int. J. Dairy Sci. 2(4), 348-355.
Fernanda R., Siddiqui Y., Ganapathy D., Ahmad K. and Surendran A. (2021). Suppression of Ganoderma boninense using benzoic acid: Impact on cellular ultrastructure and anatomical changes in oil palm wood. Forests. 12(9), 12311241.
Fernández Martínez E., Lira Islas I.G., Cariño Cortés R., Soria Jasso L.E., Pérez Hernández E. and Pérez Hernández N. (2019). Dietary chia seeds (Salvia hispanica) improve acute dyslipidemia and steatohepatitis in rats. J. Food Biochem. 43(9), 12986-12995.
Fernández M., Ordóñez J.A., Cambero I., Santos C., Pin C. and de la Hoz L. (2007). Fatty acid compositions of selected varieties of Spanish dry ham related to their nutritional implications. Food Chem. 101(1), 107-112.
Ferreira F.G., Leite L.C., Alba H.D., Pina D.S., Santos S.A., Tosto M.S. and de Freitas Júnior J.E. (2022). Palm kernel cake in diets for lactating goats: Intake, digestibility, feeding behavior, milk production, and nitrogen metabolism. Animals. 12(18), 2323.
Folnožić I., Turk R., Đuričić D., Vince S., Flegar-Meštrić Z., Sobiech P. and Samardžija M. (2016). The effect of parity on metabolic profile and resumption of ovarian cyclicity in dairy cows. Vet. Arhiv. 86(5), 641-653.
Fonseca N.V.B., Cardoso A.D.S., Bahia A.S.R.D.S., Messana J.D., Vicente E.F. and Reis R.A. (2023). Additive tannins in ruminant nutrition: An alternative to achieve sustainability in animal production. Sustainability. 15(5), 4162-4171.
Frutos P., Mantecón Á.R., Angulo G.H. and García F.J.G. (2004). Tannins and ruminant nutrition. Spanish J. Agric. Res. 2(2), 191-202.
Hajifattahi F., Moravej-Salehi E., Taheri M., Mahboubi A. and Kamalinejad M. (2016). Antibacterial effect of hydroalcoholic extract of Punica granatum Linn. petal on common oral microorganisms. Int. J. Biomater. 2016(1), 1-9.
Hanuš O., Samková E., Křížová L., Hasoňová L. and Kala R. (2018). Role of fatty acids in milk fat and the influence of selected factors on their variability—a review. Molecules. 23(7), 1636-1642.
Hashemi S.M.B., Shahidi F., Mortazavi S.A., Milani E. and Eshaghi Z. (2016). Effect of Lactobacillus plantarum LS5 on oxidative stability and lipid modifications of Doogh. Int. J. Dairy Technol. 69(4), 550-558.
Hervás G., Frutos P., Giráldez F.J., Mantecón Á.R. and Del Pino M.A.C.Á. (2003). Effect of different doses of quebracho tannins extract on rumen fermentation in ewes. Anim. Feed Sci. Technol. 109(1), 65-78.
Jenko C., Bonato P., Fabre R., Perlo F., Tisocco O. and Teira G. (2018). Adición de taninos a dietas de rumiantes y su efecto sobre la calidad y rendimiento de la carne. Cien. Doc. Tecnol. 56, 224-241.
Kaneko J.J., Harvey J.W. and Bruss M.L. (2008). Clinical Biochemistry of Domestic Animals. Academic Press, Wash-ington, D.C., USA.
Legawa M.M., Utomo R., Noviandi C.T. and Astuti A. (2022). The effect of fermented completed feed and silage as a forage replacement in the production and milk quality of friesian holstein crossbred. Pp. 51-58 in Proc. 9th Int. Semin. Trop. Anim. Prod., Yogyakarta, Indonesia.
Leketa K., Donkin E.F., Hassen A. and Akanmu A.M. (2019). Effect of Leucaena leucocephala, as a protein source in a total mixed ration, on milk yield and composition of Saanen milk goats. South African J. Anim. Sci. 49(2), 301-309.
Liao G.Q., Han H.L., Wang T.C., Li H.R., Qian Y.Z., Zhu M.X. and Qiu J. (2024). Comparative analysis of the fatty acid profiles in goat milk during different lactation periods and their interactions with volatile compounds and metabolites. Food Chem. 460, 1-9.
Liu M., Kong X.Y., Yao Y., Wang X.A., Yang W., Wu H., Li S., Ding J.W. and Yang J. (2022). The critical role and molecular mechanisms of ferroptosis in antioxidant systems: A narrative review. Ann. Transl. Med. 10(6), 368-378.
Lock A.L., Parodi P.W. and Bauman D.E. (2005). The biology of trans fatty acids: implications for human health and the dairy industry. Australian J. Dairy Technol. 60(2), 134-143.
Magan J.B.O′., Callaghan T.F., Kelly A.L. and McCarthy N.A. (2021). Compositional and functional properties of milk and dairy products derived from cows fed pasture or concentrate‐based diets. Comp. Rev. Food Sci. Food Saf. 20(3), 2769-2800.
Marín A.M., Gómez-Cortés P., Castro G.G., Juárez M., Alba L.P., Hernández M.P. and De la Fuente M. (2013). Time-dependent variations in milk fatty acid content of goats fed 3 different plant oils. J. Dairy Sci. 96(5), 3238-3246.
Medeiros E., Queiroga R., Oliveira M., Medeiros A., Sabedot M., Bomfim M. and Madruga M. (2014). Fatty acid profile of cheese from dairy goats fed a diet enriched with castor, sesame, and faveleira vegetable oils. Molecules. 19(1), 992-1003.
Miwada I.N.S., Sutama I.N.S., Sukada I.K. and Doloksaribu L. (2019). Fortification of goat milk with purple sweet potato (Ipomoea batatas L.) extract and its effects on functional cheese. Int. J. Life Sci. 3(2), 8-13.
Modi C., Patil S., Pawar M., Chaudhari A., Chauhan H. and Ashwar B. (2022). Effect of cumin (Cuminum cyminum) seed supplementation on production performance, nutrient digestibility and haemato-biochemical profile of Mehsana goats. Indian J. Anim. Sci. 92(7), 887-891.
Mohammad Abadi T. and Hoseini S. (2022). Effect of Malva sylvestris plant on milk quality and production, liver enzymes and nutrients digestibility of Khuzestani Buffalo. J. Rumin. Res. 9(4), 109-120.
Mora-Gutierrez A., Núñez de González M.T., Woldesenbet S., Attaie R. and Jung Y. (2024). Influence of deliverable form of dietary vitamin D3 on the immune response in late-lactating dairy goats. Dairy. 5(2), 308-315.
Moreira T., Facury Filho E., Meneses R., Mendonça F., Lima J. and Carvalho A. (2015). Energetic status of crossbreed dairy cows during the transition period in two different seasons. Arq. Bras. Med. Vet. Zootec. 67(5), 1327-1334.
Morsy T.A., Kholif A.E., Matloup O.H., Elella A.A., Anele U.Y. and Caton J.S. (2018). Mustard and cumin seeds improve feed utilization, milk production, and milk fatty acids of Damascus goats. J. Dairy Res. 85(2), 142-151.
Mosley E.E. and McGuire M.A. (2007). Methodology for the in vivo measurement of the Δ9-desaturation of myristic, palmitic, and stearic acids in lactating dairy cattle. Lipids. 42(10), 939-945.
Nguyen B. (2017). Development of a rapid detection and quantification method for yeasts and molds in dairy products. MS Thesis. University of Nebraska-Lincoln, Nebraska, United States.
NRC. (2010). Carbon monoxide acute exposure guideline levels. In Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 8. National Academies Press, US.
Ntaios G. and Milionis H. (2019). Low-density lipoprotein cholesterol-lowering for the prevention of cardiovascular outcomes in patients with ischemic stroke. Int. J. Stroke. 14(5), 476-482.
Núñez de González M., Attaie R., Woldesenbet S., Mora‐Gutierrez A., Kirven J., Jung Y. and Myers D. (2020). Effect of feeding a low level of encapsulated fish oil to dairy goats on milk yield, composition, and fatty acid profile. J. Am. Oil Chem. Soc. 97(3), 281-288.
Olvera-Aguirre G., Mendoza-Taco M.M., Arcos-Álvarez D.N., Piñeiro-Vázquez A.T., Moo-Huchin V.M., Canul-Solís J.R., and Chay-Canul A.J. (2020). Effect of feeding lactating ewes with Moringa oleifera leaf extract on milk yield, milk composition, and preweaning performance of ewe/lamb pair. Animals. 10(7), 1117-1125.
Otto J.R., Malau-Aduli B.S., Nichols P. and Malau-Aduli A.E.O. (2014). Influence of supplementing pasture-based primiparous Holstein-Friesian dairy cows with crude degummed canola oil on milk fatty acid composition. J. Nutr. Therapeutics. 3, 55-56.
Peña-Avelino L.Y., Ceballos-Olvera I., Rosales-Martinez G.N., Hernández-Melendez J. and Alva-Pérez J. (2023). Milk composition of creole goats raised at different altitudes in an extensive production system in Northeast Mexico. Animals. 13(11), 1738-1746.
Pesinová P., Vejcík A. and Marsálek M. (2011). Milk quality of the Original Valachian in a submontane region. J. Agrobiol. 28(2), 147-158.
Qahir A., Khan N., Hakeem A. and Kamal R. (2021). The antioxidant, antimicrobial, and clinical effects with elemental contents of pomegranate (Punica granatum) peel extracts: A review. Baghdad J. Biochem. Appl. Biol. Sci. 2(01), 21-28.
Rahman M.A., Redoy M.R.A., Chowdhury R. and Al-Mamun M. (2024). Effect of dietary supplementation of plantain herb, lemongrass and their combination on milk yield, immunity, liver enzymes, serum, and milk mineral status in dairy cows. J. Adv. Vet. Anim. Res. 11(1), 185-195.
Rezaei Sarteshnizi F., Babaei M. and Seifdavati H. (2021). The Effect of saponin extract on production performance, some blood parameters and rumen protozoa in Holstein dairy cows. Res. Anim. Prod. 12(32), 80-87.
Santos-Silva J., Bessa R. and Santos-Silva F. (2002). Effect of genotype, feeding system, and slaughter weight on the quality of light lambs: II. Fatty acid composition of meat. Livest. Prod. Sci. 77(2), 187-194.
Saqib M.N., Qureshi M.S. and Khan R.U. (2018). Changes in postpartum metabolites and resumption of ovarian cyclicity in primiparous and multiparous dairy cows. Appl. Biol. Chem. 61, 107-111.
SAS Institute. (2011). SAS®/STAT Software, Release 9.3. SAS Institute, Inc., Cary, NC. USA.
Shaani Y., Eliyahu D., Mizrahi I., Yosef E., Ben-Meir Y., Nikbachat M. and Miron J. (2016). Effect of feeding an ensiled mixture of pomegranate pulp and drier feeds on digestibility and milk performance in dairy cows. J. Dairy Res. 83(1), 35-41.
Shahravan S., Chashni Del Y., Timouri Yansari A., Hosseini S.M. and Samiei R. (2016). Effect of different levels of garlic extract on performance and some blood and carcass parameters of fattening lambs of Zol breed. J. Res. Rumin. 4(1), 131-146.
Sharp J.L., Parker A.E. and Hamilton M.A. (2023). Calculating the limit of detection for a dilution series. J. Microbiol. Methods. 208, 106723-106731.
Shingfield K.J., Bernard L. and Leroux C. (2010). Role of trans fatty acids in the nutritional regulation of mammary lipogenesis in ruminants. Animal. 4(7), 1140-1166.
Shingfield K.J., Chilliard Y., Toivonen V., Kairenius P. and Givens D.I. (2008). Trans fatty acids and bioactive lipids in ruminant milk. Bioact. Compon. Milk. 606, 3-65.
Šimat V., Bogdanović T., Poljak V. and Petričević S. (2015). Changes in fatty acid composition, atherogenic and thrombogenic health lipid indices, and lipid stability of bogue (Boops boops Linnaeus, 1758) during storage on ice: Effect of fish farming activities. J. Food Compos. Anal. 40, 120-125.
Spina A.A., Ceniti C. Trimboli F. Britti D. and Lopreiato V. (2021). Suitability of protein content measured by MilkoScan FT-Plus milk analyzer to evaluate bovine and ovine colostrum quality. Animals. 11(9), 2587-2597.
Stengärde L., Hultgren J., Tråven M., Holtenius K. and Emanuelson U. (2012). Risk factors for displaced abomasum or ketosis in Swedish dairy herds. Prev. Vet. Med. 103(4), 280-286.
Stobiecka M., Król J. and Brodziak A. (2022). Antioxidant activity of milk and dairy products. Animals. 12(3), 245-254.
Stobiecka M., Król J., Brodziak A., Klebaniuk R. and Kowalczuk-Vasilev E. (2023). Effects of supplementation with an herbal mixture on the antioxidant capacity of milk. Animals. 13(12), 2013-2021.
Toral P.G., Monahan F.J., Hervás G., Frutos P. and Moloney A. (2018). Modulating ruminal lipid metabolism to improve the fatty acid composition of meat and milk. Challenges and Opportunities. Animal. 12(2), 272-281.
Trukhachev V., Aybazov A.M., Mamontova T., Bogolyubova N., Sermyagin A., Rykov R. and Imbabi T. (2022). Evaluation of biochemical parameters and some antioxidant indicators in lactating Nubian and Karachai goats under Russian conditions. 2022, 1-16.
Van Soest P.J. (1994). Nutritional Ecology of the Ruminant. Cornell University Press, USA.
Wang Y., Ji X., Dai S., Liu H., Yan D., Zhou Y. and Shi H. (2018). Cadmium-induced redistribution of cholesterol by upregulating ABCA1 and downregulating OSBP. J. Inorg. Biochem. 189, 199-207.
Xu Q., Li Y., Du W., Zheng N., Wang J. and Zhao S. (2023). Effect of dietary biochanin A on lactation performance, antioxidant capacity, rumen fermentation and rumen microbiome of dairy goat. Front. Microbiol. 14, 1-9.
Yaowapaksophon J. (2018). Performance and milk anti-oxidant property of dairy goats fed pomegranate seed pulp and soybean oil. J. Adv. Agric. Technol. 5(2), 109-116.
Zhang X., Liu X., Chang S., Zhang C., Du W. and Hou F. (2022). Effect of Cistanche deserticola on rumen microbiota and rumen function in grazing sheep. Front. Microbiol. 13, 840725-840735.