بررسی مدل RFM جهت نیازسنجی مشتریان بر مبنای چیدمان در بهینه سازی خط تولید با استفاده از الگوریتم ازدحام ذرات و خوشه بندی بهینه (KMeans-PSO)
محورهای موضوعی : پژوهش های مدیریت راهبردی
رسول نعمت نیا
1
,
مریم خادمی
2
,
کیامرث فتحی
3
,
سهیلا سردار
4
1 - دانشجوی دکتری مدیریت صنعتی،واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران
2 - دانشیارگروه ریاضی کاربردی، دانشکده فنی و مهندسی، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران
3 - استادیارگروه مدیریت صنعتی، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران
4 - استادیار گروه مدیریت صنعتی واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: مدل RFM, الگوریتم PSO, خوشه بندی KMeans, نیازسنجی مشتریان, بهینه سازی تولید, تقسیم بندی ,
چکیده مقاله :
درتجزیه و تحلیل کسب و کارها، تقسیم بندی و شناسایی مشتری و توجه به نیاز مشتری به عنوان یک ابزارحیاتی برای شرکت ها و تولید کنندگانی که به دنبال ارتقای استراتژی های بازاریابی و تعامل با مشتری هستند، پدیدار شده است. با تقسیم بندی مشتریان به گروههای متمایز براساس رفتارها و تعاملات شان، کسب و کارها و تولیدکنندگان میتوانند پیشنهادهای خود را بر اساس ترجیحات فردی تنظیم کنند و در نتیجه رضایت و وفاداری مشتری را بهبود بخشند و خط تولید را ارتقاء دهند زیرا ترکیب یک خط محصول از نظرمدل های محصول و ویژگی ها و قیمت ها، نه تنها مستقیماً بر تصمیمات خرید مشتریان تأثیر می گذارد، بلکه تأثیر زیادی برکارایی انجام محصول دارد. طراحی خط محصول از این پس توجه زیادی رادرتحقیقات بازاریابی و مهندسی به خود جلب کرده است. دراین پژوهش، مدل فرکانس- پولی (RFM) یک روش به خوبی تثبیت شده، پایه ای برای درک رفتار و نیاز مشتری از طریق سه بُعد کلیدی تازگی تعامل، فراوانی تعامل و ارزش پولی فراهم می کند. درحالی که تجزیه و تحلیل RFM روشنگر است، چالش در تعیین تعداد بهینه خوشه ها برای تقسیم بندی موثر نهفته است. تقسیم بندی مشتری برحسب نیاز نقشی اساسی دراستراتژی های تجاری مدرن ایفا می کند و تولیدکنندگان و شرکت ها را قادر می سازد تا تلاش های بازاریابی خود را تنظیم کنند و تجارب مشتری را افزایش دهند. این مطالعه با توجه به مجموعه داده RFM و با ترکیب این مدل با الگوریتم بهینه سازی ازدحام ذرات (PSO) برای بهینه سازی تعداد خوشه K برای الگوریتم KMeans، انجام می شود و با کمک دو محیط نرم افزاری MATLAB و Python بهینه سازی صورت می گیرد و همچنین تابع برازندگی آن نیز محاسبه می شود. این روش نوآورانه یک راه حل جامع برای چالش تعیین یک پیکربندی خوشه بهینه برای داده های مشتری ارائه می دهد. درنهایت، ازطریق بررسی سیستماتیک مدلRFM، تکنیکهای عادیسازی و رویکرد PSO-KMeans مشترک، اثربخشی آن را در آشکار کردن بخشهای ظریف مشتری با مفاهیم عملی برای تصمیمگیری تجاری نشان میدهد.
1] Sibalija, T. V. (2019). Particle swarm optimisation in designing parameters of manufacturing processes: A review (2008–2018). Applied Soft Computing, 84, 105743.
[2] Qin, H., Fan, P., Tang, H., Huang, P., Fang, B., & Pan, S. (2019). An effective hybrid discrete grey wolf optimizer for the casting production scheduling problem with multi-objective and multi-constraint. Computers & Industrial Engineering, 128,458–476.
[3] Zhang, S., & Wong, T. (2018). Integrated process planning and scheduling: An enhanced ant colony optimization heuristic with parameter tuning. Journal of IntelligentManufacturing, 29, 585–601.
[4] Li, X., Xiao, S., Wang, C., & Yi, J. (2019). Mathematical modeling and a discrete artificial bee colony algorithm for the welding shop scheduling problem. Memetic Computing.
[5] I. U. Sayan, M. Demirdag, G. Yuceturk and S. M. Yalcinkaya, (2022)."A Review of Customer Segmentation Methods: The Case of Investment Sector," 2022 IEEE 5th International Conference on Big Data and Artificial Intelligence (BDAI), Fuzhou, China, pp. 200-204.
[6] Jun Wu, Li Shi, Wen-Pin Lin, Sang-Bing Tsai, Yuanyuan Li, Liping Yang, Guangshu Xu, (2020)."An Empirical Study on Customer Segmentation by Purchase Behaviors Using a RFM Model and K-Means Algorithm", Mathematical Problems in Engineering, vol. Article ID 8884227, 7 pages, 2020.
[7] Bagul, N., Berad, P., Surana, P., & Khachane, C. (2021). Retail customer churn analysis using rfm model and k-means clustering. International Journal of Engineering Research & Technology (Ijert), 10(03), 349-354.
[8] Wu, J., Shi, L., Yang, L., XiaxiaNiu, Li, Y., XiaodongCui, ... & Zhang, Y. (2021). User value identification based on improved RFM model and k-means++ algorithm for complex data analysis. Wireless Communications and Mobile Computing, 2021, 1-8.
[9] Koh, L., Orzes, G., & Jia, F. (Jeff). (2019). The fourth industrial revolution (Industry 4.0): technologies disruption on operations and supply chain management. In International Journal of Operations & Production Management (Vol. 39, Issue 6/7/8, pp. 817–828). Emerald.
[10] Fatima, Z.; Tanveer, M.H.; Waseemullah; Zardari, S.; Naz, L.F.; Khadim, H.; Ahmed, N.; Tahir, M. (2022), Production Plant and Warehouse Automation with IoT and Industry 5.0. Appl. Sci. 12, 2053.
[11] Khaleel, H., Conzon, D., Kasinathan, P., Brizzi, P., Pastrone, C., Pramudianto, F., Eisenhauer, M., Cultrona, P. A., Rusina, F., Lukac, G., & Paralic, M. (2017). Heterogeneous Applications, Tools, and Methodologies in the Car Manufacturing Industry Through an IoT Approach. In IEEE Systems Journal (Vol. 11, Issue 3, pp. 1412–1423). Institute of Electrical and Electronics Engineers (IEEE).
[12] Oztemel, E., Gursev, S. (2020). Literature review of Industry 4.0 and related technologies. J Intell Manuf 31, 127–182 .
[13] Yang, C., Shen, W., & Wang, X. (2016). Applications of Internet of Things in manufacturing. In 2016 IEEE 20th International Conference on Computer Supported Cooperative Work in Design (CSCWD). 2016 IEEE 20th International Conference on Computer Supported Cooperative Work in Design (CSCWD). IEEE..
[14] Camilleri, M. A. (2017). Understanding Customer Needs and Wants. In Tourism, Hospitality & Event Management (pp. 29–50). Springer International Publishing.
[15] Timoshenko, A., & Hauser, J. R. (2019). Identifying Customer Needs from User-Generated Content. In Marketing Science (Vol. 38, Issue 1, pp. 1–20). Institute for Operations Research and the Management Sciences (INFORMS).
[16] Liu, Y. C., & Huang, Y.-A. (2017). Factors Influence Intention to Adopt Internet Medical Information on Bulletin Boards. In Journal of Organizational and End User Computing (Vol. 29, Issue 1, pp. 23–41). IGI Global.
[17] Yazdani, M., Kahraman, C., Zarate, P., & Onar, S. C. (2019). A fuzzy multi attribute decision framework with integration of QFD and grey relational analysis. Expert Systems with Applications, 115, 474-485.
[18] Kim, M., Yin, X., & Lee, G. (2020). The effect of CSR on corporate image, customer citizenship behaviors, and customers’ long-term relationship orientation. In International Journal of Hospitality Management (Vol. 88, p. 102520). Elsevier BV.
[19]- Lo, A. K., Lynch, J. G., & Staelin, R. (2005). How to Attract Customers by Giving Them the Short End of the Stick. In SSRN Electronic Journal. Elsevier BV. https://doi.org/10.2139/ssrn.826785.
[20] Ruiz S.M.(2020). Digital Marketing, Customer Attraction.
[21] King P L , Jacob M , Velykoivanenko, O.(2021). PRODUCTION SCHEDULING – THE GOOD, THE BAD, AND THE UGLY. www.phenixps.com | info@phenixps.com | © 2021 Phenix Scheduler Inc. | All Rights Reserved.
[22] Yazdani M., Naderi B., (2017). Modeling the production scheduling problem of multi-state workshop flow with limited resources. Industrial management studies.15(41). pp.151-167.
[23] Marcello F, Fabio F, Alfredo L, Giada , Maria E N.(2015). Production Scheduling Approaches for Operations Management. Additional information is available at the end of the chapter.
[24] Tang, H., Li, D., Wan, J., Imran, M., & Shoaib, M. (2020). A Reconfigurable Method for Intelligent Manufacturing Based on Industrial Cloud and Edge Intelligence. In IEEE Internet of Things Journal (Vol. 7, Issue 5, pp. 4248–4259). Institute of Electrical and Electronics Engineers (IEEE).
[25] Yanti, M., Lubis, F. S., Nazaruddin, N., Rizki, M., Silvia, S., & Sarbaini, S. (2022). Production Line Improvement Analysis With Lean Manufacturing Approach To Reduce Waste At CV. TMJ uses Value Stream Mapping (VSM) and Root Cause Analysis (RCA) methods. In Proceedings the 3rd South American International Industrial Engineering and Operations Management Conference.
[26] Mahajan, H. B., Badarla, A., & Junnarkar, A. A. (2020). CL-IoT: cross-layer Internet of Things protocol for intelligent manufacturing of smart farming. In Journal of Ambient Intelligence and Humanized Computing (Vol. 12, Issue 7, pp. 7777–7791). Springer Science and Business Media LLC.
[27] Li, Y. (2017). The type-II assembly line rebalancing problem considering stochastic task learning. In International Journal of Production Research (Vol. 55, Issue 24, pp. 7334–7355). Informa UK Limited.
[28] Scholl, A., and C. Becker. (2006). “State-of-the-art Exact and Heuristic Solution Procedures for Simple Assembly Line Balancing.” European Journal of Operational Research 168 (3): 666–693.10.1016/j.ejor.2004.07.022.
[29] Abdous, M.-A., Delorme, X., Battini, D., Sgarbossa, F., & Berger-Douce, S. (2022). Assembly line balancing problem with ergonomics: a new fatigue and recovery model. In International Journal of Production Research (Vol. 61, Issue 3, pp. 693–706). Informa UK Limited.
[30] Baybars, İ. (1986). A Survey of Exact Algorithms for the Simple Assembly Line Balancing Problem. In Management Science (Vol. 32, Issue 8, pp. 909–932). Institute for Operations Research and the Management Sciences (INFORMS).
[31] Tremblet, D., Yelles-Chaouche, A. R., Gurevsky, E., Brahimi, N., & Dolgui, A. (2023). Optimizing task reassignments for reconfigurable multi-model assembly lines with unknown order of product arrival. In Journal of Manufacturing Systems (Vol. 67, pp. 190–200). Elsevier BV.
[32] Wang, F., Zhang, H., & Zhou, A. (2021). A particle swarm optimization algorithm for mixed-variable optimization problems. In Swarm and Evolutionary Computation (Vol. 60, p. 100808). Elsevier BV.
[33] Wu, X., Zhang, S., Xiao, W., & Yin, Y. (2019). The Exploration/Exploitation Tradeoff in Whale Optimization Algorithm. In IEEE Access (Vol. 7, pp. 125919–125928). Institute of Electrical and Electronics Engineers (IEEE)..
[34] Shami, T. M., El-Saleh, A. A., Alswaitti, M., Al-Tashi, Q., Summakieh, M. A., & Mirjalili, S. (2022). Particle Swarm Optimization: A Comprehensive Survey. In IEEE Access (Vol. 10, pp. 10031–10061). Institute of Electrical and Electronics Engineers (IEEE).
[35] Yang, B., Zhu, T., Wang, J., Shu, H., Yu, T., Zhang, X., Yao, W., & Sun, L. (2020). Comprehensive overview of maximum power point tracking algorithms of PV systems under partial shading condition. In Journal of Cleaner Production (Vol. 268, p. 121983). Elsevier BV..
[36] Zhang, X., Zou, D., & Shen, X. (2018). A Novel Simple Particle Swarm Optimization Algorithm for Global Optimization. In Mathematics (Vol. 6, Issue 12, p. 287). MDPI AG.
[37] Freitas, D., Lopes, L. G., & Morgado-Dias, F. (2020). Particle Swarm Optimisation: A Historical Review Up to the Current Developments. In Entropy (Vol. 22, Issue 3, p. 362). MDPI AG.
[38]. Ebbesen, S., Kiwitz, P., & Guzzella, L. (2012). A generic particle swarm optimization Matlab function. In 2012 American Control Conference (ACC). 2012 American Control Conference - ACC 2012.
[39] Harrison, K. R., Engelbrecht, A. P., & Ombuki-Berman, B. M. (2018). Optimal parameter regions and the time-dependence of control parameter values for the particle swarm optimization algorithm. In Swarm and Evolutionary Computation (Vol. 41, pp. 20–35). Elsevier BV..
[40] Yin, Y., Stecke, K. E., & Li, D. (2017). The evolution of production systems from Industry 2.0 through Industry 4.0. In International Journal of Production Research (Vol. 56, Issues 1–2, pp. 848–861). Informa UK Limited.
[41] Miri,A., Razavi, H.,(2018). Optimization of Discrete Facility Layout with a Candidate Grouping Approach. Production and Operations Management( Vol. 9, Issue 1, No. 16, pp.55-78).
[42] Yi Z., Hao X. Research on the Relationship between Service Cost and Customer Value Based on RFM Model Perspective. Value Engineering, (30) pp.1-4.2019.DOI. CNKI:SUN:JZGC.0.2019-30-001.
[43] Jing, S., Li, M., Zhang, Q., & Yang, F. (2021). The Digitally Associated Display Model For Convenience Stores: A Case Study. Research Square Platform LLC. https://doi.org/10.21203/rs.3.rs-373185/v1.
[44] Chen, Y., Liu, L., Zheng, D., & Li, B. (2023). Estimating travellers’ value when purchasing auxiliary services in the airline industry based on the RFM model. In Journal of Retailing and Consumer Services (Vol. 74, p. 103433). Elsevier BV.
[45] Rabbani, M., Mokhtarzadeh, M., Manavizadeh, N. et al. (2021). Solving a bi-objective mixed-model assembly-line sequencing using metaheuristic algorithms considering ergonomic factors, customer behavior, and periodic maintenance. OPSEARCH 58, 513–539 .