اثر هم افزایی نانوکامپوزیت Fe3O4 عامل دار شده با عصاره برگ اناریجه و سیپروفلوکساسین بر بیان ژن های پمپ افلاکس در جدایههای سودوموناس آئروژینوزا مقاوم به سیپروفلوکساسین
محورهای موضوعی : میکروب شناسی کاربردی
عسل صفائی توچائی
1
,
کوثر رامنه
2
,
محمد نیک پسند
3
,
نجمه رنجی
4
,
مهدی شهریاری نور
5
1 - گروه زیست شناسی، دانشکده علوم پایه، واحد رشت، دانشگاه آزاد اسلامی،رشت ایران.
2 - گروه زیست شناسی، دانشکده علوم پایه، واحد رشت، دانشگاه آزاد اسلامی،رشت ایران.
3 - گروه شیمی، دانشکده علوم پایه، واحد رشت، دانشگاه آزاد اسلامی،رشت ایران.
4 - گرو ژنتیک، دانشکد علوم، دانشگا آزاد اسالمی واحد رشت، رشت، ایران.
5 - گروه زیست شناسی، دانشکده علوم، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران.
کلید واژه: سيپروفلوكساسين, اناریجه, پمپ افلاکس, نانوذرات مگنتیک , سودوموناس آئروژينوزا,
چکیده مقاله :
سابقه و هدف: اناریجه، به عنوان یک ترکیب گیاهی دارای خواص آنتی اکسیدانی، ضد سرطانی و ضد باکتریایی است. و محافظت کننده کبدی دارد. هدف از این مطالعه ارزیابی اثرات ضد باکتریایی نانوکامپوزیت Fe3O4 عامل دار شده با عصاره برگ اناریجه بر جدایه های سودوموناس آئروژینوزا بود. مواد و روش ها: در اين مطالعه ، جدایههاي سودوموناس آئروژينوزا از چند بيمارستان و آزمايشگاه در شهر تهران تهيه شد. پس از تست آنتیبیوگرام و تعیین MIC، ارزیابی تشکیل بیوفیلم، و تعیین FIC و بررسی بیان ژنهای پمپ افلاکس در جدایه های تحت تیمار با نانوکامپوزیت Fe3O4 عامل دار شده با عصاره برگ اناریجه (1/2MIC) و سیپروفلوکساسین (1/2MIC) (گروه تست)، صورت گرفت. نتایج : اثرات سینرژستیک نانوکامپوزیت Fe3O4 عامل دار شده با عصاره برگ اناریجه و سیپروفلوکساسین با روش رقت چکربورد (checkerboard) تأیید شد. تشکیل بیوفیلم در باکتری های تیمار شده با نانوکامپوزیت Fe3O4 عامل دار شده با عصاره برگ اناریجه (1/2MIC) و سیپروفلوکساسین (1/2MIC) در مقایسه با باکتری های تیمار شده با سیپروفلوکساسین (1/2MIC) کاهش یافت. این مطالعه نشان داد نانوکامپوزیت Fe3O4 عامل دار شده با عصاره برگ اناریجه (1/2MIC) و سیپروفلوکساسین (1/2MIC) باعث کاهش بیان ژنهای mexA، mexB، mexX و oprM در مقایسه با سیپروفلوکساسین (1/2MIC) شد. نتیجهگیری: نتایج ما پیشنهاد می کند که نانوکامپوزیت Fe3O4 عامل دار شده با عصاره برگ اناریجه در ترکیب با سیپروفلوکساسین رشد سودوموناس آئروژینوزا را از طریق کاهش تشکیل بیوفیلم و کاهش بیان ژن های پمپ افلاکس مهار می کند.
Background & Objectives: Pseudomonas aeruginosa is an opportunistic gram-negative bacterium that is a major cause of nosocomial infections such as severe burns. Froriepia subpinnata is an herbal component have antioxidant, anticancer and antibacterial properties. The aim of this study was to evaluate antibacterial effects of Froriepia subpinnata leaf extract-functionalized magnetic nanocomposite on ciprofloxacin resistant isolates of Pseudomonas aeruginosa. Materials and methods: In this study, Pseudomonas aeruginosa isolates were obtained from some hospitals and laboratories in Tehran city. After disc diffusion and MIC tests, biofilm formation assay, FIC determination and evaluation of efflux pump genes in the isolates were treated by Froriepia subpinnata leaf extract-functionalized Fe3O4 nanocomposite (1/2MIC) and ciprofloxacin (1/2MIC) (test group), and treated by ciprofloxacin (1/2MIC) (control group) were performed. Results: Synergic effects of Froriepia subpinnata leaf extract-functionalized Fe3O4 nanocomposite and ciprofloxacin was confirmed with checkerboard dilution method. Biofilm formation decreased in Froriepia subpinnata leaf extract-functionalized Fe3O4 nanocomposite (1/2MIC) and ciprofloxacin (1/2MIC) treated bacteria in compared to ciprofloxacin (1/2MIC) treated bacteria. This study showed that combination of Froriepia subpinnata leaf extract-functionalized Fe3O4 nanocomposite (1/2MIC) and ciprofloxacin (1/2MIC) led to downregulation of mexA, mexB, mexX and oprM genes in compared to ciprofloxacin (1/2MIC). Conclusion: Our results suggested that Froriepia subpinnata leaf extract-functionalized Fe3O4 nanocomposite (1/2MIC) in combination with ciprofloxacin inhibits the growth of Pseudomonas aeruginosa through decrease of biofilm formation and reducing the expression of efflux pump genes.
. Feng X, Zhang Z, Li X, Song Y, Kang J, Yin D, et al. Mutations in gyrB play an important role in ciprofloxacin-resistant Pseudomonas aeruginosa. Infection and drug resistance. 2019:261-72.
2. Spagnolo AM, Sartini M, Cristina ML. Pseudomonas aeruginosa in the healthcare facility setting. Reviews and Research in Medical Microbiology. 2021;32(3):169-75.
3. Webber MA, Piddock LJ. The importance of efflux pumps in bacterial antibiotic resistance. Journal of antimicrobial chemotherapy. 2003;51(1):9-11.
4. Llanes C, Hocquet D, Vogne C, Benali-Baitich D, Neuwirth C, Plésiat P. Clinical strains of Pseudomonas aeruginosa overproducing MexAB-OprM and MexXY efflux pumps simultaneously. Antimicrobial agents and chemotherapy. 2004;48(5):1797-802.
5. Hocquet D, Muller A, Blanc K, Plésiat P, Talon D, Monnet DL, et al. Relationship between antibiotic use and incidence of MexXY-OprM overproducers among clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2008;52(3):1173-5.
6. Llanes C, Hocquet D, Vogne C, Benali-Baitich D, Neuwirth C, Plésiat P. Clinical strains of Pseudomonas aeruginosa overproducing MexAB-OprM and MexXY efflux pumps simultaneously. Antimicrob Agents Chemother. 2004;48(5):1797-802.
7. Vallet I, Diggle SP, Stacey RE, Cámara M, Ventre I, Lory S, et al. Biofilm formation in Pseudomonas aeruginosa: fimbrial cup gene clusters are controlled by the transcriptional regulator MvaT. Journal of bacteriology. 2004;186(9):2880-90.
8. Nabavi S, Ebrahimzadeh M, Nabavi S, Jafari M. Free radical scavenging activity and antioxidant capacity of Eryngium caucasicum Trautv and Froripia subpinnata. 2008.
9. Otaghsara SH, Garoosi G, Najafzadehvarzi H, Kazemi S. Effects of Froriepia subpinnata extract on serum biochemicals and histopathological changes of liver in rats treated with trichloroacetic acid. IranianVeterinary Journal. 2020:72.
10. Roudbaraki ZA, Ranji N, Mohammadipour A, Ghasemnegad Z. The effect of silybin-encapsulated micelle nanoparticles on mexY expression in ciprofloxacin-resistant isolates of Pseudomonas aeruginosa. Journal of Microbial World. 2018;36(11):269-77.
11. Jung HJ, Lee DG. Synergistic antibacterial effect between silybin and N,N′-dicyclohexylcarbodiimide in clinical Pseudomonas aeruginosa isolates. The Journal of Microbiology. 2008;46(4):462-7.
12. Pourasgar S, Ranji N, Asadpour L, Shahriarinour M, Nikpassand M. Antibacterial and Anti-cancer Properties of Curcumin-Functionalized Silica-Coated Fe3O4 Magnetic Nanoparticles. Arabian Journal for Science and Engineering. 2024.
13. Honarmand Jahromy S, Zare Karizi S. Evaluation of Biofilm Formation and Frequency of Genes Encoding Curli Fiber, Colanic Acid Capsule and F1c Fimberia Among Uropathogenic Escherichia coli Isolates With Strong Cell Surface Hydrophobicity. Avicenna J Clin Microbiol Infect. 2019;6(1):2-8.
14. Imani Pirsaraei B, Ranji N, Asadpour L. Investigation the Effect of Micelle Nanoparticles Containing Curcumin on Ciprofloxacin Resistant Isolates of Pseudomonas Aeruginosa and on mexC and mexD Genes Expression. Journal of Arak University of Medical Sciences. 2018;21(2):10-20.
15. Farahi RM, Ali AA, Gharavi S. Characterization of gyrA and parC mutations in ciprofloxacin-resistant Pseudomonas aeruginosa isolates from Tehran hospitals in Iran. Iran J Microbiol. 2018;10(4):242-9.
16. Rajabpour M, Alikhani MY. MIC determination of Pseudomonas aeruginosa strains were isolated from clinical specimens of patients admitted to educational hospitals in Hamedan (90-91). Iranian Journal of Medical Microbiology. 2013;7(3):18-25.
17. Hossainzadeh S, Ranji N, Naderi Sohi A, Najafi F. Silibinin encapsulation in polymersome: A promising anticancer nanoparticle for inducing apoptosis and decreasing the expression level of miR-125b/miR-182 in human breast cancer cells. Journal of Cellular Physiology. 2019;234(12):22285-98.
18. Shahmoradi SS, Salehzadeh A, Ranji N, Habibollahi H. Trigger of apoptosis in human liver cancer cell line (HepG2) by titanium dioxide nanoparticles functionalized by glutamine and conjugated with thiosemicarbazone. 3 Biotech. 2023;13(6):195.
19. Riou M, Avrain L, Carbonnelle S, El Garch F, Pirnay J-P, De Vos D, et al. Increase of efflux-mediated resistance in Pseudomonas aeruginosa during antibiotic treatment in patients suffering from nosocomial pneumonia. International journal of antimicrobial agents. 2016;47(1):77-83.
20. Fekri Kohan S, Nouhi Kararoudi A, Bazgosha M, Adelifar S, Hafezolghorani Esfahani A, Ghaderi Barmi F, et al. Determining the potential targets of silybin by molecular docking and its antibacterial functions on efflux pumps and porins in uropathogenic E. coli. International Microbiology. 2024.
21. Ahmadi Roudbaraki Z, Ranji N, Soltani Tehrani B. Deregulation of mexb gene in ciprofloxacin resistant isolates of pseudomonas aeruginosa treated with silibinin-encapsulated in nanoparticles. Journal of Babol University of Medical Sciences. 2017;19(11):42-9.