ارزیابی تحمل سرما و اثر ترکیبات ضد یخ در برخي ژنوتیپهای آلو و گوجه سبز (Prunus spp)
محورهای موضوعی : تنشمحیالدین پیرخضری 1 , امیر عباس تقی زاده 2
1 - پژوهشکده میوههای معتدله و سردسیری، موسسه تحقیقات علوم باغبانی، سازمان تحقیقات ترویج و آموزش کشاورزی، تهران، ایران
2 - پژوهشگر، پژوهشکده میوهای معتدله و سردسیری، موسسه تحقیقات علوم باغبانی، سازمان تحقیقات، آموزش و ترویج کشاورزی
کلید واژه: آلو, گوجه سبز, محصولات ضدیخ, سرمای بهاره ,
چکیده مقاله :
آلو و گوجه از مهمترین میوههای تولیدی کشور هستند و اغلب بخشی از این محصول به دلیل سرمازدگی بهاره از بین می رود. تحقیق حاضر به منظور ارزیابی تحمل به سرما و اثر ترکیبات ضد یخ گیاهی در دو آزمایش مستقل در آزمایشگاه و شرایط باغ بر برخی ژنوتیپهای آلو و گوجه انجام شد. نمونه های شاخه بریده در مرحله تورم جوانه در فیتوترون با شبیه سازی 24 ساعته شرایط سرمازدگی قرار گرفت. آزمایش در قالب طرح فاکتوریل با دو فاکتور ژنوتیپ (23 ژنوتیپ) و ترکیبات ضد یخ (پستافرت، تیوفر،آب مقطر، کراپ اید و گارد) بر پایه طرح کاملا تصادفی انجام گردید. نتایج تجزیه به مولفههای اصلی و تجزیه خوشهای مشخص كرد که هشت ژنوتیپ (کد 73، آلو تخم مرغی، سانتارزا، سنقر آبادی، سوسوری، شابلون شهریار، ابلنایا و بلک استار) بیشترین مقادیر مربوط به صفات میوه و درصد تشکیل میوه را در شرایط تنش سرمایی داشتند و شش ژنوتیپ (بخارا آبگوشتی، کد 17، رین کلود باوی، گوجه باغی، تابستانه قصر دشت و گوجه زردآلو قصر دشت) بیشترین درصد گل و مادگی سالم را داشتند و بعنوان ارقام متحمل معرفی می شوند. تجزیههای چند متغیره، ضدیخ پستافورد را به عنوان بهترین تیمار ضدیخ با اثر بر خصوصیات کمی و کیفی گل و میوه و بيشترين مقادير مربوط به صفات میوه (وزن ميوه، طول ميوه، عرض ميوه، قطر ميوه و مواد جامد محلول كل)، درصد گل و مادگي سالم و کمترین میزان نشت یونی معرفی نمود و پس از آن ضد یخ های کراپ اید و گارد کارایی بهتری داشتند. تجزیه همبستگی نشان داد که بین نشت یون و گل های سالم (r = 0.61**)، و مادگی سالمr = 0.72 **) ) همبستگی منفی وجود دارد.
Plum and Prunes are one of the most important stone fruits produced in Iran and for many years, a great part of this product is lost due to late spring frost. The present research was performed to investigate the effect of some anti-freeze products in two independent experiments in laboratory and garden conditions in some commercial genotype of Plum and Prunes. A factorial experiment (23 genotypes and five anti-freezing treatments) was conducted based on complete randomized block design. In this study, frost condition was simulated for 24 h in phytotron and buds were treated for four hours at -3°C. Results of principal component and cluster analysis corroborated that eight genotypes (namely, code 73, alu tokhmehmorghi, santarosa, songor abadi, soosari, shablon shariar, ablenaya and black star) possessed the highest values related to fruit traits, fruit set, spour and flower density under frost stress and six genotypes (namely, bokhara abghoshti, code17, rin clud, gojeh baghi, tabestaneh ghasrdasht, gojeh zardalu ghasrdasht) retained the highest healthy flowers and pistils, being as the most cold tolerant genotypes. Moreover, multivariate analysis introduced Pestaford as the best anti-freezing product yielding the highest values for fruit weight, length, width, diameter, total soluble solids, healthy pistil and healthy flowers under frost condition and after that, Crop Aid and Guard antifreezes worked better. Correlation analysis showed
References
1. Ahmadi, H., Babalar, M., Sarcheshmeh, M. A. A., Morshedloo, M. R. & Shokrpour, M. (2020). Effects of exogenous application of citrulline on prolonged water stress damages in hyssop (Hyssopus officinalis L.): Antioxidant activity, biochemical indices, and essential oils profile. Food Chemistry, 333, 127433. DOI: 10.22059/ijhs.2020.301271.1793
2. Anderson, J.L. & Seeley, S.D. 1993. Bloom delay in deciduous fruits. Horticultural Review. 15, 97-144. DOI: 10.1002/9780470650547.ch3
3. Andrews, P.K. & Proebsting, E.L. (1987). Effects of temperature on the deep supercooling characteristics of dormant and deacclimating sweet cherry flower buds. Journal of American Society for Horticultural Science, 112(2), 334-340. DOI:10.21273/jashs.112.2.334
4. Ashworth, E.N. & Wishiewski, M.E. (1991). Response of fruit tree tissues to freezing temperatures. Horticultural Science. 26: 501–504. DOI: https://doi.org/10.21273/HORTSCI.26.5.501
5. Barranco, D. & N. Ruiz. (2005). Frost Tolerance of Eight Olive Cultivars. Hortscience, 40 (3): 558-560. DOI: https://doi.org/10.21273/HORTSCI.40.3.558
6. Burke, M.J., Gusta, L.V., Quamme, H.A., Weiser, C.J., Li, P.H., 1976. Freezing and injury in plants. Annual Review, Plant Physiol. 27, 507-528. DOI:10.1146/annurev.pp.27.060176.002451
7. Crisosto C.H., Crisosto G.M., Echeverria G. & Puy J. (2007). Segregation of plum and pluot cultivars according to their organoleptic characteristics. Postharvest Biology and Technology, 44: 271–276. DOI: 10.1016/j.postharvbio.2006.12.005
8. Durner, E.F., Gianfagna, T.J., 1991. Peach pistil carbohydrate and moisture contents and growth during controlled deacclimation following ethephon application. Journal of American Society Horticultural. Science. 116, 507-511. DOI:10.21273/JASHS.116.3.507
9. Dwivedi, P. & Dwivedi, R.S. (2005). Physiology of abiotic stress in plants. Agrobios Jodhpur (India). ISBN 10: 8177542478. 354p.
10. Friesen, L.J., Stushnoff, C., 1985. Spring frost injury relative to phenophase bud development in Saskatoon berry. Horticultural science 20, 744-746. DOI:10.21273/hortsci.20.4.744
11. Food and Agriculture Organization of the United Nations (2020) Statistics. from www. fao.org
12. Food and Agriculture Organization of the United Nations. (2016). Frost protection: fundamentals, practice and economics. Retrieved from www. fao.org/docrep /008/y7223e/y7223e0c.htm.
13. George, M.F., Becwar, M.R. & Burke, M.J. (1982). Freezing avoidance by deep under cooling of tissue water-hardy plants. Cryobiology, 19, 628-639. DOI: https://doi.org/10.1016/0011-2240(82)90192-4
14. Gharesheikhbayat, R., Pirkhezri, M. (2022). Evaluation of side effects of growth regulators used as anti-frost in apricots and plums on fertility characteristics. XIV International Symposium on Plant Bioregulators in Fruit Production. ISHS Acta Horticulturae 1344. DOI: 10.17660/ActaHortic.2022.1344.4. DOI: 10.17660/ActaHortic.2022.1344.4
15. Hajivand, Sh. & Rahmati M. (2018). The effects of anti-freeze compounds on the effective biological materials in freezing tolerance of grape under the orchard conditions. Journal of Horticultural Science. 32. 159-170. DOI: https://doi.org/10.22067/jhorts4.v32i1.64047
16. Hausman, J. F., Reisen, D. & Evers, D. (2003). Chilling stress and physiological changes in Sorbus domestica grown in vitro: Anti oxidative systems and carbohydrate adjustment. Acta Horticultural. 618, 245-252. DOI: https://doi.org/10.17660/ActaHortic.2003.618.28
17. Howell, G.S. & Weiser, C.J. (1970). Fluctuations in the cold resistance of apple towing during spring de-hardening. Journal of American Society Horticultural Science, 92(2), 190-192. DOI:10.21273/JASHS.95.2.190
18. IMAS (2019). Iran’s Ministry of Agriculture. Agricultural Statistics of Iran (IMAS): 2018–2019.
19. Kader, S.A. & Proebesting, E. (1992). Freezing behavior of Prunus, subgenus padus, flower buds. Journal of American Society Horticultural Science, 117(6), 95-960. DOI: 10.21273/jashs.117.6.955
20. Khanizadeh, S., Buszard, D., Zarkadas, C.G., 1992. Effect of crop load on hardiness, protein and amino acids content of apple flower buds at the wintering stage and the beginning of the growth. Journal of Plant Nutrient, 15, 2441-2455. DOI: https://doi.org/10.1080/01904169209364486
21. Lu, S. & Rieger, M. (1993). Effect of temperature precondition on ovary freezing tolerance of fully opened peach flowers. Journal of Horticultural Science, 68, 343-347. DOI: 10.1080/00221589.1993.11516360
22. Mahmodzadeh, O. & Imani, A. (2011). Effect of some of anti-frost on morphology, anatomy and proline of selective almond cultivars flower buds. International Journal of Nuts and Related Sciences, 2(3): 35-40. DOI: 10.22034/jon.2011.515746.
23. Milatovic, D., Durovic, D. & Dordevic., B. (2010). Evaluation of Japanese plum cultivars in Serbia. ISHS Acta Horticulturae, 981, 173-176. DOI: https://doi.org/10.17660/ActaHortic.2013.981.24
24. Milosevic, T. & Milosevic., N. (2012). Phenotypic diversity of autochthonous European (Prunus domestica L.) and Damson (Prunus insititia L.) plum accessions based on multivariate analysis. Horticultural Science, 39 (1). 8–20. DOI: 10.17221/99/2011-HORTSCI
25. Miranda, C., Santesteban, L.G. & Royo, J.B. (2005). Variability in the relationship between frost temperature and injury level for some cultivated prunus species. Horticultural Science, 4(2), 357-361. DOI:10.21273/HORTSCI.40.2.357
26. Nejatian MA., Gholmohammadi, M. Rasouli, V. & Hajivand, SH., (2015). Chemical compound induced frost tolerance in apricots. Ninth national congress of horticultural science, Ahvaz, Iran.
27. Okie, W.R., Werner, D.J., 1996. Genetic influence on flower bud density in peach and nectarine exceeds that of environment. Horticultural science 31, 1010-1012. DOI:10.21273/HORTSCI.31.6.1010
28. Pirkhezri, M. (2015). Plum & prunes (cultivars and rootstocks). Agricultural, Education and Extension press. pp. 1-210.
29. Pirkhezri, M. (2019). Evaluation of anti- freezing component on preventing of spring frost injury on plum and prune trees (Prunus spp). 11th national congress of horticultural science, 14-17 sep., orumia, Iran, pp, 1-5.
30. Pirkhezri, M. (2021). Identification of Self-Incompatibility Alleles in Some Japanese Plum (Prunus salicina Lindl.) Cultivars and Genotypes Using Polymerase. Seed and plant journal, 36(4),pp, 509-526. DOI: 10.22092/sppi.2021.123897
31. Pirkhezri, M. (2020). Morphological and pomological Evaluation of a number of cultivars and genotypes of three commercial plum species (Prunus spp L.). Research in pomology journal, 6(1), pp: 107-120. DOI: 10.30466/rip.2021.121090
32. Rasoolzadegan, y. (1997). Temperate Zone Fruits. Esfahan University pub. pp. 759.
33. Rodrigo, J. (2000). Spring frost in deciduous fruit trees morphological damage and flower hardiness. Horticultural Scienc, 85:155-173. DOI:10.1016/S0304-4238(99)00150-8.
34. Rieger, M., S. Lu, & M. Duemmel. 1991. Frost tolerance of some peach and Japanese plum cultivars. Fruit Variant Journal, 45:3–6.
35. Riger, M. 2006. Introduction to fruit crop. Haworth Press, USA. 449 pp.
36. Román‐Figueroa, C., Bravo, L., Paneque, M., Navia, R. & Cea, M. (2021). Chemical products for crop protection against freezing stress: A review. Journal of Agronomy and Crop Science, 207(3), 391-403. https://doi.org/10.1111/jac.12489
37. Strang, J.G., Lombard, P.B., Westwood, M.N., Weiser, C.J., 1980. Effect of duration and rate of freezing and tissue hydration of `Barlett' pear buds, fowers, and small fruits. Journal of American Society Horticultural Science, 105, 102-107. DOI:10.21273/JASHS.105.1.102
38. Szalay, L., Molnár Á. & Kovács, S. (2016). Frost hardiness of flower buds of three plum (Prunus domestica L.) cultivars, 1291): 35-43. https://doi.org/10.1016/j.scienta.2016.11.039
39. Syverten, J. P. & Smith, M. L. (1983). Environment stress and seasonal changes in proline concentration of citrus tree tissues and juice. Horticultural Science, 108(5):861-866
40. Tanino, K.K., Kalcsits, L., Silim, S., Kendall, E. and Gray, G.R. 2010. Temperature-driven plasticity in growth cessation and dormancy development in deciduous woody plants: a working hypothesis suggesting how molecular and cellular function is affected by temperature during dormancy induction. Plant Molecular Biology 73, 49–65. DOI: 10.1007/s11103-010-9610-y
41. Westwood, M.N., 1993. Temperate-zone Pomology: Physiology and Culture. Timber Press, Portland.
