آبشويي متناوب خاک شور و سديمي دشت سيستان با استفاده از بيوچار، بيوچار اسيدي، اکسيدگرافن و گچ
محورهای موضوعی : مدیریت بهینه منابع آب و خاکآزاد آقایی 1 , پیمان افراسیاب 2 , معصومه دلبری 3 , علی شهریاری 4 , علیرضا اویسی 5
1 - دانشجوي دکتراي تخصصي آبياري و زهکشي، گروه مهندسي آب، دانشگاه زابل، زابل، ايران.
2 - عضو هيئت علمي، گروه مهندسي آب، دانشگاه زابل، زابل، ايران.
3 - عضو هيئت علمي، گروه مهندسي آب، دانشگاه زابل، زابل، ايران.
4 - عضو هيئت علمي، گروه مهندسي خاک، دانشگاه زابل، زابل، ايران.
5 - عضو هيئت علمي، گروه مهندسي شيمي، دانشگاه زابل، زابل، ايران.
کلید واژه: آبشويي, بيوچار, اکسيد گرافن, اصلاح خاک, نسبت جذب سديم,
چکیده مقاله :
زمينه و هدف: شوري و کاهش حاصلخيزي خاک از مهمترين چالشهاي زيستمحيطي در مديريت اراضي، بهويژه در مناطق خشک و نيمهخشک مانند منطقه سيستان محسوب ميشوند. اين شرايط نه تنها توليد محصولات کشاورزي را محدود ميکند، بلکه تعادل اکوسيستم را نيز تهديد مينمايد. اصلاح خاکهاي شور و سديمي در چنين مناطقي به دليل نياز حياتي به توليد محصولات زراعي، امري ضروري است. در اين راستا، استفاده همزمان از مواد اصلاحکننده و فرآيند آبشويي بهعنوان يک راهکار کارآمد براي بهبود کيفيت اين نوع خاکها مطرح شده است. هدف از اين تحقيق، بررسي اثر اصلاحکنندههاي مختلف شامل گچ، بيوچار، بيوچار اسيدي و اکسيد گرافن در کاهش شوري، سديم تبادلي و بهبود ويژگيهاي شيميايي خاک بود.
روش پژوهش: در اين پژوهش، تأثير ترکيبات اصلاحي مختلف بر فرآيند آبشويي خاکهاي شور-سديمي دشت سيستان مورد بررسي قرار گرفت. مواد اصلاحي شامل بيوچار توليدشده از چوب انگور و ترکيبات آن با ترفتاليک اسيد، اکسيد گرافن و گچ بودند. آزمايشها در شرايط کنترلشده آزمايشگاهي و با استفاده از لولههاي استوانهاي انجام شد. خاک مورد استفاده، با بافت لوم و شرايط شور و سديک، از منطقه نيمروز سيستان برداشت و در ستونهايي با ظرفيت ۵/۱ کيلوگرم جايگذاري شد. فرآيند آبشويي در ۱۰ دوره متناوب با فواصل ۵ روزه انجام گرديد و در هر دوره، آبياري معادل حجم منفذي خاک صورت گرفت. در پايان هر دوره، زهآب استخراج و ويژگيهاي شيميايي آن اندازهگيري شد. علاوه بر اين، پس از تکميل آزمايشها، خاک داخل ستونها نيز مورد بررسي قرار گرفت.
يافتهها: نتايج نشان داد که استفاده از بيوچار اصلاحشده، بهويژه در تيمار حاوي ۵ درصد ترفتاليک اسيد و اکسيد گرافن، مؤثرترين کاهش در شوري خاک و نسبت جذب سديم را ايجاد کرده است. استفاده از بيوچار اصلاحشده باعث افزايش ظرفيت نگهداري مواد مغذي و بهبود خواص شيميايي خاک شد. دادههاي حاصل از آزمايشهاي شيميايي زهآب نشان داد که براي دستيابي به آبشويي کامل خاک، حجم آبي معادل چهار تا پنج برابر حجم منفذي کافي است و اين حجم آبي توانست تغييرات قابل توجهي در غلظت يونهاي سديم و کلريد ايجاد کند. همچنين مقايسه بين تيمارها نشان داد که اصلاحکنندههاي آلي (بيوچار و ترکيب آن با ترفتاليک اسيد) عملکرد بهتري نسبت به گچ در کاهش شوري و سديم تبادلي دارند و ميتوانند به عنوان راهکار مؤثرتر در مديريت خاکهاي شور-سديمي مطرح شوند.
نتايج: اين يافتهها نشاندهنده کارايي استفاده همزمان از بيوچار اصلاحشده و فرآيند آبشويي در بهبود خاکهاي شور و سديمي هستند. کاهش شوري و سديم تبادلي نه تنها ميتواند کيفيت خاک و عملکرد زراعي را افزايش دهد، بلکه به حفظ تعادل شيميايي و اکوسيستمي خاک نيز کمک ميکند. اين مطالعه اهميت استفاده همزمان از اصلاحکنندههاي آلي در ترکيب با روش آبشويي متناوب را در مديريت خاکهاي شور و سديمي مناطق خشک و نيمهخشک تأکيد ميکند و نتايج آن ميتواند بهعنوان راهنماي علمي و کاربردي براي برنامهريزي کشاورزي و بهبود کيفيت خاک در چنين مناطق استفاده شود.
Background and Aim:Soil salinity and decreased fertility are among the most critical environmental challenges in land management, especially in arid and semi-arid regions such as Sistan. These conditions not only limit agricultural production but also threaten ecosystem balance. Amending saline-sodic soils in such areas is essential due to the vital need for crop production. In this context, the simultaneous use of soil amendments and leaching has been proposed as an effective strategy to improve soil quality. This study aimed to investigate the effects of different amendments, including gypsum, biochar, acid-modified biochar, and graphene oxide, on reducing salinity and exchangeable sodium, as well as improving soil chemical properties.
Materials and Methods:
The effects of various amendments on the leaching of saline-sodic soils from the Sistan plain were examined. The amendments included grapewood biochar, its combination with terephthalic acid, graphene oxide, and gypsum. Experiments were conducted under controlled laboratory conditions using cylindrical columns. The soil, with a loam texture and saline-sodic characteristics, was collected from Nimroz, Sistan, and placed in columns with a capacity of 1.5 kg. The leaching process was performed over ten intermittent cycles with five-day intervals, applying water equal to the soil pore volume in each cycle. At the end of each cycle, the leachate was collected and its chemical properties were measured. Additionally, the soil inside the columns was analyzed after the completion of the experiments.
Findings:Results showed that the use of modified biochar, particularly in the treatment containing 5% terephthalic acid and graphene oxide, produced the most significant reduction in soil salinity and sodium adsorption ratio. The use of modified biochar also increased nutrient retention capacity and improved the chemical properties of the soil. Leachate analyses indicated that a water volume equal to four to five times the soil pore volume was sufficient to achieve complete soil leaching, effectively altering sodium and chloride concentrations. Comparisons among treatments showed that organic amendments (biochar and its combination with terephthalic acid) performed better than gypsum in reducing salinity and exchangeable sodium, suggesting their superior effectiveness for managing saline-sodic soils.
Conclusion:These findings demonstrate the efficiency of using modified biochar in combination with intermittent leaching to improve saline-sodic soils. Reducing salinity and exchangeable sodium not only enhances soil quality and crop performance but also contributes to maintaining soil chemical and ecosystem balance. This study emphasizes the importance of using organic amendments together with intermittent leaching in managing saline-sodic soils in arid and semi-arid regions, and the results can serve as a practical and scientific guide for agricultural planning and soil quality improvement in such areas.
Abel S, Peters A, Trinks S et al .(2013). Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 202:183–191
Ahmad M, Rajapaksha AU, Lim JE et al .(2014). Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33
Ali, S., et al. (2019). The effect of acid biochar on sodium adsorption ratio (SAR) in salt-affected soils. Environmental Science and Pollution Research, 26(7), 6981-6989.
Bachmann HJ, Bucheli TD, Dieguez-Alonso A et al .(2016). Toward the standardization of biochar analysis: the COST action TD1107 interlaboratory comparison. J Agric Food Chem 64:513–527
Cheng H, Jones DL, Hill P et al .(2018). Influence of biochar produced from different pyrolysis temperature on nutrient retention and leaching. Arch Agron Soil Sci 64:850–859
Corwin, D.L., Rhoades, J.D. and Simunek, J. (2007). Leaching requirement fore soil salinity control : Steady – state versus transient models. Agricul Water Manage , 90(3):165-180.
Dotaniya, M. L., Meena, M. D., Choudhary, R. L., Meena, M. K., & Harvir. (2023). Management of plant nutrient dynamics under alkaline soils through graded application of pressmud and gypsum
El-Sharkawy M, El-Naggar AH, AL-Huqail AA, Ghoneim AM .(2022). Acid-modified biochar impacts on soil properties and biochemical characteristics of crops grown in saline-sodic soils.Sustainability 14:8190
Fouladi Dorehami, S. (2023). Application of various organic residues and biochar in saline-sodic soil reclamation. Journal of Water and Soil Conservation Research, 14(4), 123–135. (in Persian)
Ghaneie Motlagh G.H., Pashaiy Aval A., Khormaly F., and Mosaedy A. (2010). Investigating effect of some amendments on soil chemical properties in a saline-sodic soil. Watershed Management Research Journal, 86: 24-31. (In Persian)
Ghanimotlagh, S., Hosseini, B., & Kazemi, F. (2010). Effects of gypsum, sulfuric acid, and sulfur on the properties of sodic soils. Iranian Journal of Soil and Agricultural Research, 12(3), 89–98. (in Persian)
Glaser B, Lehmann J, Zech W .(2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal–a review. Biol Fertil soils 35:219–230
Hafeez A, Pan T, Tian J, Cai K (2022) Modified biochars and their effects on soil quality: a review. Environments 9:60
Hosseininia, M., Hassanpour, F., Naghavi, H., Abbasi, F., Bastani, S. (2019). Leaching of Saline Calcareous Soil under Laboratory Conditions. ISSN 1064-2293, Eurasian Soil Science, 2019, Vol. 52, No. 10, pp. 1214–1222.
Jalali, M., et al. (2016). Effect of gypsum and biochar on electrical conductivity of saline soils. Journal of Soil Science and Plant Nutrition, 16(3), 45-59.
Kalu, S., Simojoki, A., Karhu, K., & Tammeorg, P. (2021). Long-term effects of softwood biochar on soil physical properties, greenhouse gas emissions, and crop nutrient uptake in two contrasting boreal soils. Department of Agricultural Sciences, University of Helsinki, FI-00014 Helsinki, Finland.
Keren R. (2000). Salinity. In: Sumner M.E. (Ed.), Handbook of Soil Science. pp. G3-G25. CRC Press, Boca Raton.
Konuku, F.,Gowing,G.W.and Rose, D.A.(2005).Dry drain:A sustainable solution to water logging and salinity problems in irrigation areas, Agricul Water Manage .83(1-2):1-12.
Lal,P .Chippa, B.R. and Arvind, K.(2003). Salt affected soils and crop production , a modern synthesis, AGROBIS(India). Corwin, D.L., Rhoades,J.D., and Simunek, J.2007.Leaching requirement fore soil salinity control : Steady state versus transient models. Agricul Water Manage ,90(3):165-180.
lsudays, I. M., et al. (2024). "Applications of humic and fulvic acid under saline soil conditions to improve growth and yield in barley." BMC Plant Biology. https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-024-04863-6
Mzezewa J., Gotosa J., and Nyamwanza B. (2003). Characterization of a sodic soil catena for reclamation and improvement strategies. Geoderma. 113, 161-175.
Qadir M., and Schubert S. (2002). Degradation processes and nutrient constraints in sodic soils. Land Deg. Dev. 13, 275-294.
Rezaei, M. (2018). Effects of biochar and irrigation water salinity on soil chemical properties. Journal of Water and Soil Conservation Research, 11(2), 56–68. (in Persian)
Rezapour, M. (2025). Effects of combined soil amendments on improving soil salinity, sodicity, and biological indicators. Journal of Water and Soil Conservation Research, 15(3), 234–245. (in Persian)
Rezazadeh, S., Gholamalizadeh, A., & Gazmeh, S. (2016). Evaluation of different interpolation methods for spatial estimation of some soil properties (Case study: Sistan Plain lands). Journal of Water and Soil Science (Science and Technology of Agriculture and Natural Resources), 20(4), Winter 2016. (in Persian)
Saadat, S. (2024). Monitoring soil salinity status in the Sistan plain using remote sensing data. Journal of Soil and Water Science and Engineering. (in Persian)
Sadegh-Zadeh, F,. Parichehreh, M,. Jalili, B,. Bahmanyar,A. (2018). Rehabilitation of calcareous saline‐sodic soil by means of biochars and acidified biochars. Land degradation and development. Volume29, Issue10. October 201. Pages 3262-3271.
Sadeghzadeh, F., Ahmadi, R., & Rezaei, M. (2018). Reclamation of calcareous saline-sodic soils using acidified biochars. Iranian Journal of Soil and Water Sciences, 29(4), 123–135. (in Persian)
Sahin O, Taskin MB, Kaya EC et al .(2017). Effect of acid modification of biochar on nutrient availability and maize growth in a calcareous soil. Soil Use Manag 33:447–456
Streubel JD, Collins HP, Garcia-Perez M et al .(2011). Influence of biochar on soil pH, water holding capacity, nitrogen and carbon dynamics. Soil Sci Soc Am J 75:1402–1413
Taheri M, al-R, Astaraei AR, Lakzian A, Emami H .(2022). Sorbitol and biochar have key roles in microbial and enzymatic activity of saline-sodic and calcareous soil in millet cropping. Rhizosphere 24:100598
Wang L, Ok YS, Tsang DCW et al .(2020). New trends in biochar pyrolysis and modification strategies: feedstock, pyrolysis conditions, sustainability concerns and implications for soil amendment. Soil Use Manag 36:358–386
Wang, Xiao, Jianli Ding, Lijing Han, Jiao Tan, Xiangyu Ge, and Qiong Nan. (2024). "Biochar Addition Reduces Salinity in Salt-Affected Soils with No Impact on Soil pH: A Meta-Analysis." Geoderma 443: 116845.
Xiao L, Meng F .(2020). Evaluating the effect of biochar on salt leaching and nutrient retention of Yellow River Delta soil. Soil Use Manag 36:740–750
Yazdanpanah, N., & Mahmoudabadi, M. (2011). Temporal changes in leachate quality during the reclamation process of saline-sodic soil using soil columns. Electronic Journal of Soil Management and Sustainable Production, 1(1), 1-20. (in Persian)
Yazdanpanah, N., & Mahmoudabadi, M. (2012). Temporal monitoring of drainage water quality during the reclamation process of saline-sodic soil using soil columns. Journal of Soil Management and Sustainable Production, 1(1), 1-22. (in Persian)
Yazdanpanah, S., & Mahmoudabadi, M. (2011). Effects of gypsum, organic matter, and leaching on saline-sodic soils of Kerman Province. Journal of Soil and Water Conservation, 11(2), 15–26. (in Persian)
Yu O-Y, Raichle B, Sink S (2013) Impact of biochar on the water holding capacity of loamy sand soil. Int J Energy Environ Eng 4:1–9.
