Improving Tolerance of Tomato Plants to NaCl Toxicity for Agricultural Sustainability
محورهای موضوعی : Plant Physiology
Rabiaa KOUADRIA
1
,
Samira SOUALEM
2
,
Asma Souad Ouldkaddour
3
,
Mohammed Bouzouina
4
1 - Higher School of Agronomy, Kharrouba – Mostaganem, 27000, Algeria
2 - Ibn Khaldoun University, Tiaret, 14000, Algria
3 - Higher School of Agronomy, Kharrouba – Mostaganem, 27000, Algeria
4 - Plant Protection Laboratory, Abdelhamid Ibn Badis – Mostaganem University, Kharrouba - Mostaganem, 27000, Algeria
کلید واژه: Solanum lycopersicum , Pleosporaceae sp. , NaCl stress , Germination,
چکیده مقاله :
Plant growth and yield are affected by salinity. Symbiotic interactions between plants and endophytic fungi are a promising approach to promoting crop growth under salt-stress conditions. Here, the tolerance of the endophytic fungus Pleosporaceae sp. was verified under diverse NaCl levels (0, 50, 100, 150, and 200 mM). Subsequently, Pleosporaceae sp. production of indole acetic acid (IAA) was assessed in vitro at various salinity levels (0, 50, 100, 150, and 200 mM). Additionally, the effect of Pleosporaceae sp. inoculation on germination, growth, and biochemical characteristics of tomato (Solanum lycopersicum L.) under five levels of salinity (0, 20, 50, 100, 150, and 200 mM NaCl) was investigated. The results indicated that Pleosporaceae sp. exhibited strong salt tolerance and produced approximately 138.6 ± 0.7 μg/ml of IAA under 100 mM NaCl. Moreover, the results showed that this symbiotic fungus significantly enhanced germination and growth under salinity. Pleosporaceae sp. also significantly improved proline and sugar accumulation under salt treatment. This study suggests that the endophytic fungus Pleosporaceae sp. can be employed to mitigate sodium chloride-induced stress in plants, thereby improving plant growth and productivity.
Plant growth and yield are affected by salinity. Symbiotic interactions between plants and endophytic fungi are a promising approach to promoting crop growth under salt-stress conditions. Here, the tolerance of the endophytic fungus Pleosporaceae sp. was verified under diverse NaCl levels (0, 50, 100, 150, and 200 mM). Subsequently, Pleosporaceae sp. production of indole acetic acid (IAA) was assessed in vitro at various salinity levels (0, 50, 100, 150, and 200 mM). Additionally, the effect of Pleosporaceae sp. inoculation on germination, growth, and biochemical characteristics of tomato (Solanum lycopersicum L.) under five levels of salinity (0, 20, 50, 100, 150, and 200 mM NaCl) was investigated. The results indicated that Pleosporaceae sp. exhibited strong salt tolerance and produced approximately 138.6 ± 0.7 μg/ml of IAA under 100 mM NaCl. Moreover, the results showed that this symbiotic fungus significantly enhanced germination and growth under salinity. Pleosporaceae sp. also significantly improved proline and sugar accumulation under salt treatment. This study suggests that the endophytic fungus Pleosporaceae sp. can be employed to mitigate sodium chloride-induced stress in plants, thereby improving plant growth and productivity.
Adilu, G. S. and Y. G. Gebre. 2021. Effect of salinity on seed germination of some tomato (Lycopersicon esculentum Mill.) varieties. Journal of Aridland Agriculture, 7, 76-82.
Akagi, A., C.-J. Jiang and H. Takatsuji. 2015. Magnaporthe oryzae inoculation of rice seedlings by spraying with a spore suspension. Bio-protocol, 5, (11) e1486-e1486.
Ameen, M., A. Mahmood, A. Sahkoor, M. A. Zia and M. S. Ullah. 2024. The role of endophytes to combat abiotic stress in plants. Plant Stress, 100435.
Atta, N., M. Shahbaz, F. Farhat, M. F. Maqsood, U. Zulfiqar, N. Naz, M. M. Ahmed, N. U. Hassan, N. Mujahid and A. E.-Z. M. Mustafa. 2024. Proline-mediated redox regulation in wheat for mitigating nickel-induced stress and soil decontamination. Scientific Reports, 14, (1) 456.
Badawy, A. A., M. O. Alotaibi, A. M. Abdelaziz, M. S. Osman, A. M. Khalil, A. M. Saleh, A. E. Mohammed and A. H. Hashem. 2021. Enhancement of seawater stress tolerance in barley by the endophytic fungus Aspergillus ochraceus. Metabolites, 11, (7) 428.
Byregowda, R., S. R. Prasad, R. Oelmüller, K. N. Nataraja and M. Prasanna Kumar. 2022. Is endophytic colonization of host plants a method of alleviating drought stress? Conceptualizing the hidden world of endophytes. International journal of molecular sciences, 23, (16) 9194.
Chauhan, P., N. Sharma, A. Tapwal, A. Kumar, G. S. Verma, M. Meena, C. S. Seth and P. Swapnil. 2023. Soil microbiome: Diversity, benefits and interactions with plants. Sustainability, 15, (19) 14643.
De La Reguera, E., J. Veatch, K. Gedan and K. L. Tully. 2020. The effects of saltwater intrusion on germination success of standard and alternative crops. Environmental and Experimental Botany, 180, 104254.
Furtado, B. U., M. Gołębiewski, M. Skorupa, P. Hulisz and K. Hrynkiewicz. 2019. Bacterial and fungal endophytic microbiomes of Salicornia europaea. Applied and Environmental Microbiology, 85, (13) e00305-00319.
Ghorbani, A., L. Pishkar, K. V. Saravi and M. Chen. 2023. Melatonin-mediated endogenous nitric oxide coordinately boosts stability through proline and nitrogen metabolism, antioxidant capacity, and Na+/K+ transporters in tomato under NaCl stress. Frontiers in Plant Science, 14, 1135943.
Ghorbani, A., S. Razavi, V. G. Omran and H. Pirdashti. 2018. Piriformospora indica alleviates salinity by boosting redox poise and antioxidative potential of tomato. Russian Journal of Plant Physiology, 65, 898-907.
Gordon, S. A. and R. P. Weber. 1951. Colorimetric estimation of indoleacetic acid. Plant physiology, 26, (1) 192.
Hadjadj, S., B. B. Sekerifa, H. Khellafi, K. Krama, S. Rahmani and A. O. El Hadj-Khelil. 2022. Salinity and type of salt effects on seed germination characteristics of medicinal plant Zygophyllum album L.(Zygophyllaceae) native to the Algerian Sahara. Journal of Applied Research on Medicinal and Aromatic Plants, 31, 100412.
Ignatova, L., A. Usmanova, Y. Brazhnikova, A. Omirbekova, D. Egamberdieva, T. Mukasheva, A. Kistaubayeva, I. Savitskaya, T. Karpenyuk and A. Goncharova. 2022. Plant probiotic endophytic Pseudomonas flavescens D5 strain for protection of barley plants from salt stress. Sustainability, 14, (23) 15881.
Ismail, M. Hamayun, A. Hussain, A. Iqbal, S. A. Khan and I.-J. Lee. 2018. Endophytic fungus Aspergillus japonicus mediates host plant growth under normal and heat stress conditions. BioMed Research International, 2018, (1) 7696831.
Jalili, B., H. Bagheri, S. Azadi and J. Soltani. 2020. Identification and salt tolerance evaluation of endophyte fungi isolates from halophyte plants. International journal of environmental science and technology, 17, 3459-3466.
Kondrasheva, K., F. Egamberdiev, R. Suyarova, D. Ruzieva, S. Nasmetova, L. Abdulmyanova, G. Rasulova and T. Gulyamova.2022. Production of indole-3-acetic acid by endophytic fungi of halophyte plants under salt stress. Proc. IOP Conference Series: Earth and Environmental science, 2022, 1068:012040: IOP Publishing.
Kouadria, R., M. Bouzouina, B. Lotmani and S. Soualem. 2023. Unraveling the role of endophytic fungi in barley salt-stress tolerance. Hellenic Plant Protection Journal, 16, 12-22.
Kumar, V., V. Shriram, M. A. Hossain and P. Kishor. 2015. Engineering proline metabolism for enhanced plant salt stress tolerance. Managing salt tolerance in plants: molecular and genomic perspectives, 1,
Laksana, C., O. Sophiphun and S. Chanprame. 2023. In vitro and in vivo screening for the identification of salt-tolerant sugarcane (Saccharum officinarum L.) clones: molecular, biochemical, and physiological responses to salt stress. Saudi Journal of Biological Sciences, 30, (6) 103655.
Li, X., S. Han, G. Wang, X. Liu, E. Amombo, Y. Xie and J. Fu. 2017. The fungus Aspergillus aculeatus enhances salt-stress tolerance, metabolite accumulation, and improves forage quality in perennial ryegrass. Frontiers in microbiology, 8, 1664.
Liu, C., B. Mao, D. Yuan, C. Chu and M. Duan. 2022. Salt tolerance in rice: Physiological responses and molecular mechanisms. The Crop Journal, 10, (1) 13-25.
Lu, Y. and W. Fricke. 2023. Salt Stress—Regulation of root water uptake in a whole-plant and diurnal context. International Journal of Molecular Sciences, 24, (9) 8070.
Manjunatha, N., N. Manjunatha, H. Li, K. Sivasithamparam, M. G. Jones, I. Edwards, S. J. Wylie and R. Agarrwal. 2022. Fungal endophytes from salt-adapted plants confer salt tolerance and promote growth in wheat (Triticum aestivum L.) at early seedling stage. Microbiology, 168, (8) 001225.
Morales-Vargas, A. T., V. López-Ramírez, C. Álvarez-Mejía and J. Vázquez-Martínez. 2024. Endophytic fungi for crops adaptation to abiotic stresses. Microorganisms, 12, (7) 1357.
Nasrin, S. and M. A. Mannan. 2019. Impact of salinity on seed germination and seedling growth of tomato. J Biosci Agric Res, 21, 1737-1748.
Otlewska, A., M. Migliore, K. Dybka-Stępień, A. Manfredini, K. Struszczyk-Świta, R. Napoli, A. Białkowska, L. Canfora and F. Pinzari. 2020. When salt meddles between plant, soil, and microorganisms. Frontiers in plant science, 11, 553087.
Shahzad, K., E. H. Siddiqi, S. Ahmad, U. Zeb, I. Muhammad, H. Khan, G.-F. Zhao and Z.-H. Li. 2022. Exogenous application of indole-3-acetic acid to ameliorate salt induced harmful effects on four eggplants (Solanum melongena L.) varieties. Scientia Horticulturae, 292, 110662.
Shields, R. and W. Burnett. 1960. Determination of protein-bound carbohydrate in serum by modified anthrone method. Analytical Chemistry, 32, (7) 885-886.
Singh, J., E. D. Sastry and V. Singh. 2012. Effect of salinity on tomato (Lycopersicon esculentum Mill.) during seed germination stage. Physiology and Molecular Biology of Plants, 18, 45-50.
Sun, Y., Q. Wang, X. Lu, I. Okane and M. Kakishima. 2012. Endophytic fungi associated with plants collected from desert areas in China. Mycol Prog, 11, 781-790.
Tebini, M., G. Rabaoui, S. M’rah, D.-T. Luu, H. Ben Ahmed and A. Chalh. 2022. Effects of salinity on germination dynamics and seedling development in two amaranth genotypes. Physiology and Molecular Biology of Plants, 28, (7) 1489-1500.
Troll, W. and J. Lindsley. 1955. A photometric method for the determination of proline. Journal of biological chemistry, 215, (2) 655-660.
Venkatachalam, M., L. Gérard, C. Milhau, F. Vinale, L. Dufossé and M. Fouillaud. 2019. Salinity and temperature influence growth and pigment production in the marine-derived fungal strain Talaromyces albobiverticillius 30548. Microorganisms, 7, (1) 10.
Verma, A., N. Shameem, H. S. Jatav, E. Sathyanarayana, J. A. Parray, P. Poczai and R. Sayyed. 2022. Fungal endophytes to combat biotic and abiotic stresses for climate-smart and sustainable agriculture. Frontiers in plant science, 13, 953836.
Waqas, M., A. L. Khan, M. Kamran, M. Hamayun, S.-M. Kang, Y.-H. Kim and I.-J. Lee. 2012. Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules, 17, (9) 10754-10773.
Wei, Y., M. Dong, Z.-Y. Huang and D.-Y. Tan. 2008. Factors influencing seed germination of Salsola affinis (Chenopodiaceae), a dominant annual halophyte inhabiting the deserts of Xinjiang, China. Flora-Morphology, Distribution, Functional Ecology of Plants, 203, (2) 134-140.
Zhang, Y., J. Xu, R. Li, Y. Ge, Y. Li and R. Li. 2023. Plants’ response to abiotic stress: Mechanisms and strategies. International Journal of Molecular Sciences, 24, (13) 10915.
Zhao, S., Q. Zhang, M. Liu, H. Zhou, C. Ma and P. Wang. 2021. Regulation of plant responses to salt stress. International Journal of Molecular Sciences, 22, (9) 4609.