شبیهسازی و بهینهسازی سیکل رانکین آلی بازیافت انرژی حرارت اتلافی پالایشگاه با سیال عامل مخلوط
محورهای موضوعی : انرژی های تجدید پذیر
بهنام سمیع
1
,
مسعود ترابی آزاد
2
,
غلامرضا صالحی
3
,
کامران لاری
4
1 - دانشجوی دکتری مهندسی سیستم های انرژی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران
2 - استاد، گروه فیزیک دریا، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران
3 - دانشیار،گروه مهندسی مکانیک، دانشکده فنی و مهندسی، واحد تهران مرکز، دانشگاه آزاد اسلامی، تهران، ایران
4 - دانشیار گروه فیزیک دریا، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: سیکل رانکین آلی, ترمواکونومیک, اکسرژی, بهینهسازی ازدحام ذرات, سیال عامل مخلوط.,
چکیده مقاله :
زمینه و هدف: اتلافات انرژی در پالایشگاههای نفت و گاز را میتوان با استفاده از سیکلهای رانکین آلی به توان تبدیل نمود و میزان مصرف سوخت کاهش و الایندی را کاهش داد. تحقیق حاضر به بهینه سازی چرخه رانکین الی با سیال عامل مخلوط با الگوریتم ازدحام ذرات میپردازد.
روش بررسی: دو مدل سیکل مختلف سیکل رانکین ساده (BORC)، سیکل رانکین با مبدل میانی (RORC) در نرمافزار ASPEN HYSYS شبیهسازی شده و این مدل ها برای توابع هدف راندمان انرژی و نرخ هزینه کل بهینهسازی شدهاند. حرارت گاز خروجی سیکل گازی خروجی پالایشگاه به عنوان منبع اصلی گرما در سیکلها استفاده شده است. تعداد 10 سیال انتخاب و حالت خالص و ترکیب چند جزیی این سیالات با دقت 1/0 به عنوان سیال عامل استفاده شده است.
یافته ها: تجزیه و تحلیل ترمودینامیکی و ترمواکونومیکی برای هر سیکل انجام شده و نتایج با یکدیگر مقایسه گردیدند. اثر سیالات عامل مختلف، فشار ورودی پمپ و فشار خروجی پمپ بر عملکرد سیکل نیز ارزیابی شده است. انتخاب سیال عامل بر عملکرد ترمودینامیکی سیستم تأثیر میگذارد، زیرا تفاوت چشمگیری در عملکردهای ترمودینامیکی در یک سیکل با شرایط یکسان با سیال عامل مختلف دیده میشود.
بحث و نتیجه گیری: وجود مبدل میانی باعث کاهش اکسرژی تخریب شده کندانسور میشود. همچنین از نتایج مشاهده میشود که افزایش فشار ورودی کندانسور تأثیر منفی بر عملکرد ترمودینامیکی و اقتصادی دارد و عملکرد ترمودینامیکی سیکلها با افزایش فشار ورودی توربین افزایش مییابد.
Background and Objectives: Energy losses in oil and gas refineries can be converted into power using organic Rankine cycles. The present study focuses on optimizing the organic Rankine cycle with mixed working fluid using particle swarm optimization.
Material and Methodology: Energy losses in oil and gas refineries can be converted into power using organic Rankine cycles. The present study focuses on optimizing the organic Rankine cycle with mixed working fluid using particle swarm optimization. For this purpose, two different cycle models are simulated in Aspan Hysys software and these models are optimized for the objective functions of energy efficiency and total cost rate. The simulated cycles are: simple Organic Rankine Cycle (BORC), Rankine cycle with intermediate heat exchanger (RORC). The exhaust gas heat of the refinery outlet gas cycle is used as the main heat source in the cycles. 10 fluids are selected and the pure state and multicomponent mixture of these fluids are used as working fluids with an accuracy of 0.1.
Finding: Thermodynamic and thermoeconomic analysis are performed for each cycle and the results are compared with each other. The effect of different working fluids, pump inlet pressure and pump outlet pressure on the cycle performance is also evaluated. The choice of working fluid affects the thermodynamic performance of the system, because a significant difference in thermodynamic performances is seen in a cycle with the same conditions with different working fluids.
Discussion and conclusion: The presence of an intermediate exchanger reduces the destroyed exergy of the condenser. It is also observed from the results that increasing the condenser inlet pressure has a negative effect on the thermodynamic and economic performance, and the thermodynamic performance of the cycles increases with increasing turbine inlet pressure.
1. Nasiri. Parvin et al., 2013, Identification and assessment of potential hazards in a manufacturing company using the job safety analysis method, Environmental Science and Technology, Volume 8, Issue 4, pp. 77-87.
2. Sarkhil. Hamid et al., 2014, Health, Safety and Environment Performance Indicators, A Sustainable Approach to Establishing the HSE_MS Management System in Asaluyeh Refinery A, The First Conference of Environmental Supporters with an HSE Approach, Tehran University of Science and Technology, Volume 1, pp. 10-18.
3. Sarkhil. Hamid et al., 2014, Studying the Effect of Environmental Performance Indicators on the Integrated HSE Management System in South Pars, The First HSE Conference in Construction, Mining, Oil and Gas Projects, Tehran, Shahid Beheshti University of Science and Technology, Volume 1, pp. 79-87.4.
4. Sarkheil, H., Alghasi, S. and Sadeghy Nejad, A., 2025. Modeling Offshore Environmental Risk Assessment: a Case Study of Installing Tripod Bases in a Deep Sea Mining Structure. Journal of Mining and Environment, 16(2), 705-719. doi: 10.22044/jme.2024.14304.2673
5. Sarkheil, H., Sadeghian, M., Talebi, A. and Partovi Hajidehi, A., 2025. Environmental Risk Modeling of Maintenance Processes in Zanjan's Transmission and High-Voltage Electrical Substations Using Innovative Integrated FMEA and ETBA Methods. Environmental Sciences, doi: 10.48308/envs.2025.1469
6. Sarkheil H., Torabi P., Hassani H., 2023. Environmental Risk Modeling of Hydrocarbon Exploration and Exploitation using Energy Trace Barrier Assessment Method, the case study of Tabnak Hydrocarbon Field, Journal of oil and gas exploration and production, No. 206, pp. 41-48.
7. Liu, S.Y., Wanga, H.Q., Li, Y.L., 2012. Current Progress of Environmental Risk Assessment Research, Procedia Environmental Sciences, No. 13, pp. 1477 – 1483.
8. Stapleton, P.J., Glover, M.A., Davis S.P., 2001. Environmental management systems: an implementation guide for small and medium sized organizations, Ann Arbor, NSF International.
9. Mao, X.L., Zhao, Z.J., Zhang, H., 1998. Introduction of APELL and its application in EIA, Environmental Science, No. 19. pp. 1-5.
10. Du, S.J., 2006. Advances in Environmental Risk Assessment, Environmental Science and Management, No. 31, pp. 193-194.
11. Sarkhil. Hamid et al., 2014, Review and comparison of environmental assessment studies and environmental risk assessment, history, methods and application with a case study of the Yaran Shamali oil field, Second National Conference on Crisis Management and HSE in Vital Arteries, Industries and Urban Management, Tehran, University of Tehran, Volume 2, p. 42.12.
12. Zhang, K., Pei, Y., Lin, C., 2010. An investigation of correlations between different environmental assessments and risk assessment, Procedia Environmental Sciences, No. 2, pp. 643–649.
13. Kelvin, S.H., 2005. Environmental impact assessment: Practice and participation, Oxford Uni. Press.
14. Canter, L., 1996. Environmental Impact Assessment, Singapore, McGraw-Hill.
15. BRITISH STANDARD (B.S.), BS 8800, 1996. Guide to Occupational health and safety management systems. Copyright by the British Standards institution.
16. Liu, K. F. R., 2007. Evaluating environmental sustainability: An integration of multiple-criteria decision-making and fuzzy logic, Environmental Management, No. 39, pp. 721–736.
17. Kevin, F.R.L., Jia-Hong, L., 2009. Decision-support for environmental impact assessment: A hybrid approach using fuzzy logic and fuzzy analytic network process, Expert Systems with Applications, No. 36, pp. 5119–5136.
18. Shepard, R.B., 2005. Quantifying environmental impact assessments using fuzzy logic, New York: Springer.
19. Artley, W., Stroh, S., 2001. Establishing an Integrate Performance Measurement System, The Performance-Based Management Handbook, Volume 2, Performance-Based Management special Interest Group (PBM SIG).
20. Omidvari. Manouchehr and Norouzi. Sajid, 2012, Investigation and analysis of occupational and industrial accidents using indicators and criteria for measuring and evaluating safety performance, Industrial Management Organization Publications, first edition.21. Willie H., 1993. Product Safety Management and Engineering,Library of Congress- in publication date.
21. Mohammadfam. Iraj and Mahmoudi. Shahram, 2009, Design and presentation of a
comprehensive system for measuring the performance of the HSE system in MAPNA Group, First National Conference on Thermal Power Plants Industry.
22. Mohammadfam. Iraj and Kianfar. Mohammad, 2009, Application of the HAZOP Operation and Hazard Study Technique in Assessing Safety, Health and Environmental Risks - Case Study (National Petroleum Products Distribution Company Oil Storage Tank), Environmental Science and Technology, 12th Volume, Issue 1.
23. Bahmannia. Gholamreza, 2005, Change Management and Its Role in Continuous Improvement of HSE Management Systems, HSE Strategy Journal, 1, Issue 4.
24. Karami. Mostafa, 2009, Practical Guide to Establishing, Planning, Implementing and Developing a Management System, Omid Mehr Publications, First Edition, HSE-MS Health, Safety and Environment.
