بررسي تغييرات پايداري خاکدانه ها پس از ترکيب افزودني هاي خاک
محورهای موضوعی : آبخیزداری و استحصال آبنیوشا محبتی 1 , لیلا غلامی 2 , عطااله کاویان 3 , فاطمه شکریان 4
1 - دانش آموخته کارشناسي ارشد، گروه مهندسي آبخيزداري، دانشکده منابع طبيعي، دانشگاه علوم کشاورزي و منابع طبيعي ساري، ساري، ايران.
2 - دانشيار، گروه مهندسي آبخيزداري، دانشکده منابع طبيعي، دانشگاه علوم کشاورزي و منابع طبيعي ساري، ساري، ايران.
3 - استاد، گروه مهندسي آبخيزداري، دانشکده منابع طبيعي، دانشگاه علوم کشاورزي و منابع طبيعي ساري، ساري، ايران.
4 - دانشيار، گروه مهندسي آبخيزداري، دانشکده منابع طبيعي، دانشگاه علوم کشاورزي و منابع طبيعي ساري، ساري، ايران.
کلید واژه: ترکيب افزودنيهاي آلي و معدني, پايداري خاکدانه, شبيهساز باران, فرسايش خاک,
چکیده مقاله :
زمينه و هدف: پايداري خاکدانهها به عنوان يکي از ويژگيهاي کليدي کيفيت خاک، تأثير زيادي بر حرکت آب، تهويه و انتشار عناصر غذايي در خاک دارد. از سويي کاربرد افزودني ها در خاک هاي فرسايش يافته مي توان تاثير زيادي بر تغييرات در پايداري خاکدانه هاي خاک داشته باشد. بنابراين اين تحقيق با هدف بررسي تأثير کمپوست و زئوليت بر پايداري خاکدانهها در شرايط آزمايشگاهي و تحت باران شبيهسازي شده با شدت 80 ميليمتر بر ساعت انجام شده است. با توجه به اهميت پايداري خاکدانهها در جلوگيري از فرسايش و بهبود کيفيت خاک، پژوهش حاضر ترکيب دو افزودني مورد نظر را نيز مورد ارزيابي قرار داد.
روش پژوهش: در اين مطالعه، از خاک سطحي جمعآوري شده از اراضي مرتعي فرسايشيافته و انتقال داده شده به آزمايشگاه دانشگاه استفاده شد. نمونههاي خاک پس از خشک شدن در معرض هوا، از طريق الککردن آمادهسازي شدند. سپس، تيمارهاي مختلف شامل کمپوست، زئوليت و ترکيب آنها به خاک اضافه گرديد. براي اندازه گيري پايداري خاکدانه هاي خاك نمونه ها در تيمارهاي حفاظتي براي بازه هاي زماني 24 ساعت، دو، چهار، هشت، 16 و 32 هفته، بررسي شدند. براي مقايسه اثرات شبيه ساز باران نيز نمونه ها هم در قبل و هم بعد از کاربرد شبيه ساز باران جمع آوري شدند. بدين منظور خاك سطحي قبل و بعد از کاربرد سامانه شبيه ساز باران براي بازه هاي زماني 24 ساعت، دو، چهار، هشت، 16 و 32 هفته، به عمق دو ميلي متر به مقدار 50 گرم جمع آوري شدند. سپس پايداري خاکدانه ها با استفاده از روش الک تر محاسبه شد. به منظور انجام عمليات دانه بندي از شش الک با دامنه قطري 500، 250، 125، 100، 53، 38 و کمتر از 38 ميکرومتر و ظرف جمع آوري کننده ذرات کوچک تر از 38 ميکرومتر استفاده شد. در نهايت آزمون هاي با استفاده از نرم افزار SPSS و گراديستات انجام شد.
يافتهها: نتايج نشان داد که افزودن کمپوست به خاک موجب افزايش قابل توجهي در پايداري خاکدانهها نسبت به تيمار شاهد گرديد. همچنين، زئوليت نيز توانست با بهبود ويژگيهاي فيزيکي خاک و افزايش ظرفيت نگهداري آب، تأثير مثبتي بر پايداري خاکدانهها داشته باشد. ترکيب کمپوست و زئوليت اثرات بيشتري بر پايداري خاکدانهها نسبت به کاربرد افزودنيها به طور جداگانه داشت. زمان کاربرد افزودني ها نشان داد که در زمان هاي هشت و چهار هفته تاثيرات افزودني هاي بر ميانگين قطر خاکدانه هاي بيش تر است. پايداري خاکدانه هاي خاک در زمان هاي 16 و 32 هفته نسبت به هشت و چهار هفته کاهش داشت. اثر افزودني هاي خاک (کمپوست، زئوليت و ترکيب آن ها)، بر مولفه هاي 10D، 90D، 10/D90D، 10D-90D، 25D/75D، 25D-75D، چولگي و جورشدگي در سطح 99 درصد معني دار بود اما روي متغيرهاي 50D و کشيدگي معني دار نبود. اثر بازه زماني بر تمامي متغيرهاي مورد بررسي در سطح 99 درصد معني دار بود. هم چنين اثر شبيه ساز باران تنها بر متغيرهاي 10D، 50D، 25D/75D، چولگي و کشيدگي در سطح 99 درصد معني دار بود.
نتايج: اين پژوهش نشان داد که استفاده از کمپوست و زئوليت ميتواند راهکار مؤثري براي بهبود پايداري خاکدانهها و کاهش فرسايش خاک باشد. نتايج اين تحقيق ميتواند بهعنوان مبنايي براي مديريت پايدار خاک و ارتقاء کيفيت آن در کشاورزي مورد استفاده قرار گيرد. همچنين، پيشنهاد ميشود که تحقيقات بيشتري در زمينه تأثيرات بلندمدت اين افزودنيها بر کيفيت خاک انجام شود تا بتوان از آنها در برنامههاي مديريت منابع طبيعي بهره برد.
Background and Objective: Soil aggregates stability is a key indicator of soil quality that it significantly affects on the water movement, aeration and nutrient distribution in the soil. On the other hand, the conditioners application in eroded soils can have the great impact on changes in the stability of soil aggregates.Terefore, this study was conducted with the Aim of investigation the compost and zeolite impact on soil aggregate stability under laboratory conditions and simulated rainfall with intensity of 80 mm h-1. Considering the importance of aggregate stability in erosion control and improving soil quality, the present study also evaluated the combination of the two conditioners.
Research Methodology: In this study, surface soil was collected from eroded rangelands and then transported to university labratory. soil samples air-drying, these were prepared by sieving. Then various treatments including compost, zeolite, and their combination were added to the soil. To measurement the aggregates stability, the samples were examined in conservation treatments for time periods of 24 h, two, four, eight, 16 and 32 weeks. To the effects comparison of rainfall simulators, the samples were collected at before and after the application of the rainfall simulator. For this purpose, the surface soil was collected before and after the application of the rain simulator system for time periods of 24 h, two, four, eight, 16 and 32 weeks, to the depth of 2-mm with amount of 50 g. Then, the aggregates stability was calculated using the wet sieve method. In order to performance of the granulation operation, six sieves were used that the diameter ranges were the size of 500, 250, 125, 100, 53, 38 and less than 38 micrometer and a container for collecting particles smaller than 38 micrometers. Finally, tests were performed using SPSS and Gradistat software.
Findings: The results indicated that the compost addition to soil the cause significantly increased aggregates stability compared to the control treatment. Furthermore, zeolite also positively impacted aggregates stability by improving physical charactrestices of the soil and increasing water retention capacity. The combination of compost and zeolite had the the more effect on the aggregates stability compared to their separately effects. The application time of conditioners showed that at eight and four weeks had the the more effects on the average aggregates diameter. The stability of soil aggregates decreased at 16 and 32 week compared to eight and four week. The effect of soil conditioners (compost, zeolite and their combination) on the components D10, D90, D10/D90, 1D0-D90, D25/D75, D25-D75, skewness and sorting was significant at the level of 99 percent, but it was not significant on the variables D50 and kurtosis. The effect of time interval on all the studied variables was significant at level of 99 percent. Also, the effect of rain simulator was only significant on the variables D10, D50, D25/D75, skewness, and kurtosis at the level of 99 percent.
Conclusion: This research showed that the usage of compost and zeolite can be the effective strategy for improvement of aggregates stability and reducing soil erosion. The results of this research can be used as a basis for sustainable soil management practices and at improving the soil quality in agriculture. It is also suggested that the further research be conducted on the long-term effects of these conditioners on soil quality so that these can be used in natural resource management programs.
Amezketa, E., 1999. Soil aggregate stability: a review. Journal of Agricultural Science and Technology. 14 (2–3): 83–151.
Amirahmadi, A., Hojjati, S.M., Bi-Porva, P., and Kaman, K. (2019). The effect of zeolite on nitrate leaching, soil aggregate stability, and seedling growth of Persian oak (Quercus castaneifolia CA Mey.). Iranian Journal of Forest and Poplar Research, 27(3): 258-271.
Annabi, M., Houot, S., Francou, C., Poitrenaud, M., and Bissonnais, Y. L. (2007). Soil aggregate stability improvement with urban composts of different maturities. Soil Science Society of America Journal, 71(2), 413-423.
Bast, A., Wilcke, W., Graf, F., Lüscher, P., & Gärtner, H. (2015). A simplified and rapid technique to Agronomy Journal, 54, 464-465.
Behzadfar, M., Sadeghi, S.H., Khanjani, M.J., and Hazbavi, Z., 2017. Effects of rates and time of zeolite application on controlling runoff generation and soil loss from a soil subjected to a freeze-thaw cycle. International Soil and Water Conservation Research, 5:2. 95-101
Benkova, M., E. Filcheva., T. Raytchev., Z. Sokolowska., and Hajnos, M., 2005. Impact of different ameliorants on humus state in acid soil polluted with heavy metals, Physicochemical Management Of Acid Soils Polluted With Heavy Metals . 46-58.
Bian, X., Ren, Z., Zeng, L., Zhao, F., Yao, Y. and Li, X., 2024. Effects of biochar on the compressibility of soil with high water content. Journal of Cleaner Production, 434, p.140032.
Bouslihim, Y., A Rochdi., and Paaza, N.E.A., 2021. Machine learning approaches for the prediction of soil aggregate stability. Heliyon, 1;7(3), e06480.
Bronick, C. J., and Lal, R. (2005). Soil structure and management: a review. Geoderma, 124(1-2), 3-22.
Denef, K., Six, J., Merckx, R., and Paustian, K. (2004). Carbon sequestration in microaggregates of no‐tillage soils with different clay mineralogy. Soil Science Society of America Journal, 68(6), 1935-1944.
Foley B. J. and L.R. Cooperband. 2002. Paper mill residuals and compost effects on soil carbon and physical properties. Journal of Environmental Quality. 31, 2086-2095.
Gang, Q., Dan, G., and Mei-Ying, F. (2013). Bioremediation of petroleum-contaminated soil by biostimulation amended. Journal of Environmental Technology, (85), 150-155.
Gerzabek, M.H., H Kirchmann., and Pichlmayer, F. 1995. Response of soil aggregates stability to manure amendments in the Ultuna long- term soil organic matter experiment. Zeitschrift– Fur Pflanzenernahrung– und– Bodenkunde. 158: 257-260.
Gholami, L., A.V Khaledi Darvishan., and kavian, A. 2016. Wood chips as soil conservation in field conditions. Arabian Journal of Geosciences, 9, 729.
Gholami, L., K Banasik., S.H.R Sadeghi., A.V Khaledi Darvishan., and Hejduk, L., 2014. Effectiveness of straw mulch on infiltration, splash erosion, runoff and sediment in laboratory conditions. Journal of Water and Land Development, 22 (VII–IX), 51–60.
Gholami, L., Shahedi, K., and Kavian A., 2019. Determining the optimal amount of livestock compost in order to control runoff and soil loss under simulated rain. Watershed Management Research (Research and Construction), 32 (4), 19-33.
Gholami, L., Shahidi, K., and Kavyan, A. (2019). Determining the optimal amount of animal compost to control runoff and soil loss under simulated rainfall. Watershed Research (Research and Construction), 32(4): 19-33.
Ghosh, B.N., V.S Meena., R.J Singh., N.M Alam., S Patra., R Bhattacharyya., N.K Sharma., K.S Dadhwal., and Mishra, P.K., 2019. Effects of fertilization on soil aggregation, carbon distribution and carbon management index of maize-wheat rotation in the north western Indian Himalayas. Ecological Indicators, 105, 415-424.
Gruhn, P., F. Goletti and M. Yudelman. 2000. Integrated nutrient management, soil fertility and sustainable agriculture: current issues and future challenges. p. 38. IFPRI (International Food Policy Research Institute), Washington DC, USA. in Chahe town, Southwest China: A hazard index approach. Catena 144, 184–193.
Haghjoo, Z. Gholami, L. Kavian, A. Mosavi, S R. 2019. Changes study of soil splash and stability of soil aggregates using polyvinyl acetate. Iranian Journal of Watershed Management Science and Engineering. (In Persian)
Haghjou, Z., Gholami, L., Kavyan, A., and Mousavi, S.R. (2017). Evaluation of the timing of polyvinyl acetate application on soil aggregate stability. Proceedings of the 3rd National Congress on Development and Promotion of Agricultural Engineering and Soil Sciences in Iran, Tehran. 5 pages.
Haghjou, Zahra, Leila Gholami, Ataollah Kavyan, and Seyed Ramadan Mousavi. (2019). Investigation of soil aggregate changes and stability of soil aggregates using polyvinyl acetate. Iranian Journal of Watershed Management Science and Engineering, 13(47): 52-62.
Hosseini, F., Mosaddeghi, M. R., Hajabbasi, M. A., and Sabzalian, M. R. (2015). Influence of tall fescue endophyte infection on structural stability as quantified by high energy moisture characteristic holding capacity and plant water use efficiency. In 10th Australian Agronomy Conference 2001. The Regional Institute. Geoderma, 249, 87-99.
Kavyan, A., Alipour, A., Soleimani, K., and Gholami, L. (2019). Measurement and comparison of soil splash erosion rates affected by acidity and rainfall intensity. Water and Soil Sciences (Agricultural Sciences and Natural Resources), 23(1): 177-186.
Kay, B.D. 2000. Soil Structure, in: Handbook of Soil Science. CRC Press, E. M. Sumner, Ed., USA: F.I., Boca Raton A229–A264.
Khademalrasoul A., Naveed, M., Heckrath, G., Kumari, K.G.I.D., de Jonge, L.W., Elsgaard, L., Vogel, H.J., and Iversen, B.V. (2014). Biochar effects on soil aggregate properties under no-till maize. Soil Science. (179), 273–283.
Khademalrasoul, Kuhn, J.N., Elsgaard, L., Hu, Y., Iversen, B.V., Heckrath, G. (2019). A. Short-term Effects of Biochar Application on Soil Loss During a Rainfall-Runoff Simulation. Soil Science. (184), 17-24.
Khaledi Darvishan, A., Gholami, L., and Mohammadi Pour, S. (2007). Introduction of the GRADISTAT macro software for particle size distribution calculations. Proceedings of the 3rd Conference on Watershed Management and Soil and Water Resources Management, pp. 540-536.
Le Bissonnais, Y., 1996. Aggregate stability and assessment of soil crustability and erodibility.1. Theory and methodology. Eur. J. Soil Sci. 47 (4), 425–437.
Legout, C., Leguedois, S., and Le Bissonnais, Y., 2005. Aggregate breakdown dynamics under rainfall compared with aggregate stability measurements. Eur. J. Soil Sci. 56 (2), 225–237.
Lim, S.L., L.H Lee., and Wu, T.Y., 2016. Sustainability of using composting and vermicomposting technologies for organic solid waste biotransformation: recent overview, greenhouse gases emissions and economic analysis. Journal of Cleaner Production. 111, 262-278.
Maafi, G., Gholami, L., Kavyan, A., and Khairfam, H. (2024). Changes in soil aggregates due to the application of biochar derived from poplar branches. Journal of Watershed Sciences and Engineering in Iran, 18(66): 26-37.
Malayi Ranani, M., Bashari, H., Mahdi Basiri, M., and Mohammad Reza Mozdighi. (2014). Evaluation of soil structure stability using the wet sieving method in some rangeland locations of Isfahan province. Journal of Agricultural Sciences and Natural Resources, Soil and Water Sciences, 18(70): 121-131.
Mohammadi, N., Khadem Al-Rasoul, A. (2021). Evaluation of the effectiveness of zeoplants and biochar from sugarcane waste on the mean weight diameter of soil aggregates and Atterberg limits of soils contaminated with petroleum substances. Iranian Journal of Water and Soil Research, 52(2): 395-407.
Najafi, Z., Baba Akbari Sari, M., Vaez, A.R., and Ahmadi, Sh. (2021). The effect of different levels of polyacrylate and humic acid on soil aggregate stability and field capacity moisture of saline and sodic soils. Iranian Journal of Water and Soil Research, 52(1): 16-24.
Paradelo, R., TH Z Lerch., S Houot., and Dignac, M F, 2019. Composting modifies the patterns of incorporation of OC and N from plant residues into soil aggregates, Geoderma 353, 415-422.
Qian, X., G Shen., Z Wang., C Guo., Y Liu., Z Lei., and Zhang, Z., 2014. Co composting of livestock manure with rice straw: characterization and establishment of maturity evaluation system. Waste Manag. 34(2), 530-535.
Ramesh, K., D Damodar Reddy., A Kumar Biswas., and Subba Rao, A., 2011. Zeolites and their potential uses in agriculture. Advances in agronomy, 113, 219-241.
Ramesh, K., D Damodar Reddy., A Kumar Biswas., and Subba Rao, A., 2011. Zeolites and their potential uses in agriculture. Adv. Agron. 113, 215–230.
Sadeghi, S.S.H.R., Karimi, Z., and Hashemi Aryan, Z. (2017). Combined application of polyacrylamide and vermicompost on runoff control and soil erosion. Journal of Soil and Water Conservation, 9(1): 1-10.
Seyadat, S.A., and Moradi Talavat, M.R. (2011). Practical aspects of organic agriculture. Agricultural Education and Promotion Publications, 246.
Shi, P., F Castaldi., B Wesemael., and K Oost., 2020. Vis-NIR spectroscopic assessment of soil aggregate stability and aggregate size distribution in the Belgian Loam Belt, Geoderma 357.
Sohraab, F., Abbasi, N., and Mahdipour, A. (2015). Investigation of the effect of zeolite application on soil aggregate stability indices. Water and Soil (Agricultural Sciences and Industries), 29(3): 663-672.
Taqdisi Heydarian, S. Z., Khorasani, R., and Emami, H. (2018). The effect of zeolite and cow manure on some physical properties of soil. Journal of Water and Soil Conservation Research, 25(5): 149-166.
Teodoro, M., L Trakal., Gallagher, B.N, Simek, P, Soudek, P, Pohorely, M, Beesley, L, Jacka, L, Kovar, M, Seyedsadr, S, and Mohan, D, 2019, Application of co-composted biochar significantly improved plant growth relevant physical/chemical properties of a metal contaminated soil, chemical properties of a metal contaminated soil, Chemosphere, doi:https://doi.org/10.1016/j.chemosphere.2019.125255.
Tisdall, J. M., and Adem, H. H. (1986). Effect of type of seedbed, type of irrigation, and of a mulch on seedling emergence, growth and yield of maize (Zea mays). Australian Journal of Experimental Agriculture, 26(2), 197-200.
Yekzaban, A., Mousavi, S.A., Thamani, A.M., and Rezaei, M. (2022). The effect of biochar from palm leaves and lemon peel on some physical and mechanical properties of a sandy loam soil. Water and Soil Modeling and Management, 3(1): 69-83.
