تحلیل وشبیه سازی مدل سیگنال کوچک ژنراتور سنکرون مجازی در سیستم ریزشبکه
غضنفر شاهقلیان
1
(
دانشکده مهندسی برق، دانشگاه آزاد اسلامی، واحد نجف آباد، نجف آباد، ایران
)
محمد رضا مرادیان
2
(
دانشکده مهندسی برق، دانشگاه آزاد اسلامی، واحد نجف آباد، نجف آباد، ایران
)
محمد علی زنجانی
3
(
دانشکده مهندسی برق، دانشگاه آزاد اسلامی، واحد نجف آباد، نجف آباد، ایران
)
کلید واژه: اینورتر, اینرسی مجازی, ژنراتور سنکرون, سیگنال کوچک, معادله نوسان,
چکیده مقاله :
ریزشبکه های مبتنی بر منابع تولید پراکنده از طریق مبدلهای الکترونیک قدرت به شبکه اصلی برق متصل میشوند که دارای اینرسی مکانیکی و میرایی کمی هستند، بنابراین باید مشخصات دینامیکی سیسم قدرت همزمان با ادغام منابع انرژی تجدیدپذیر به منظور پایداری بهبود پیدا کنند. ژنراتورهای سنکرون مجازی یکی از روشهای موثر برای ادغام سیستمهای انرژی تجدیدپذیر در شبکه برق است. برای داشتن رفتاری مشابه ژنراتور سنکرون واقعی به تغییر یا اختلال توسط ژنراتور سنکرون مجازی، عمل کنترل در مبدل الکترونیک قدرت واحد تولید پراکنده انجام میشود. در این مقاله با استفاده از مدل سیگنال کوچک و مدل فضای حالت ویژگیهای دو روش افت و ژنراتور سنکرون مجازی برای کنترل توانهای اکتیو و راکتیو مقایسه شده است. ارزیابی بین این دو استراتژی کنترلی متفاوت با استفاده از نتایج شبیهسازی در محیط متلب انجام شده است. همچنین ویژگیهای ژنراتور سنکرون در اثر تغییرات ممان اینرسی و ضریب میرایی نشان داده شده است. مدل سیگنال کوچک سیستم مورد مطالعه در سیمولینک متلب نیز پیادهسازی شده است. ادغام ژنراتور سنکرون مجازی در ریزشبکه علاوه بر کاهش انحرافات فرکانس و ولتاژ، باعث بهبود پایداری نیز میشود.
چکیده انگلیسی :
Microgrids based on distributed generation sources are connected to the main power grid through power electronic converters that have low mechanical inertia and damping, so the dynamic characteristics of the power system must be improved simultaneously with the integration of renewable energy sources for stability. Virtual synchronous generators are one of the effective methods for integrating renewable energy systems into the power grid. In order to have a behavior similar to that of a real synchronous generator when changed or disturbed by a virtual synchronous generator, the control operation is performed in the power electronic converter of the distributed generation unit. In this paper, the characteristics of two droop methods and a virtual synchronous generator for controlling active and reactive powers are compared using the small signal model and the state space model. The evaluation between these two different control strategies is performed using simulation results in the MATLAB environment. Also, the characteristics of the synchronous generator due to changes in the moment of inertia and damping coefficient are shown. Integrating the virtual synchronous generator in the microgrid, in addition to reducing frequency and voltage deviations, also improves stability.
بررسی کاهش میرایی کاربرد مبدلهای الکترونیک قدرت در شبکه
مقایسه روش کنترل افتی با تکنیک ژنراتور سنکرون مجازی
تعیین مدل سیگنال کوچک ژنراتور سنکرون مجازی متصل به شین بینهایت
مقایسه سرعت پاسخدهی به ازای تغییرات بار دو روش کنترلی
[1] J. Song, X. Zhou, Z. Zhou, Y. Wang, Y. Wang and X. Wang, "Review of low inertia in power systems caused by high proportion of renewable energy grid integration," Energies, vol. 16, no. 16, Article Number: 6042, Aug. 2023, doi: 10.3390/en16166042.
[2] F. Mesrinejad, S. Yaghoubi and B. Fani, "Secondary frequency control for improved dynamic performance in interconnected power system," Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering, vol. 14, no. 3, pp. 47-54, Sept. 2022, dor: 20.1001.1.27834441.2022.14.3.5.9.
[3] Y. Du, J. M. Guerrero, L. Chang, J. Su, M. Mao, "Modeling, analysis, and design of a frequency-droop-based virtual synchronous generator for microgrid applications," Proceeding of the IEEE/ECCE, pp. 643-649, Melbourne, VIC, Australia, June 2013, doi: 10.1109/ECCE-Asia.2013.6579167.
[4] M. Mahdavian, G. Shahgholian, M. Janghorbani, B. Soltani and N. Wattanapongsakorn, "Load frequency control in power system with hydro turbine under various conditions", Proceeding of the IEEE/ECTICON, pp. 1-5, Hua Hin, Thailand, June 2015, doi: 10.1109/ECTICon.2015.7206938.
[5] M. Riahinasab, N. Behzadfar and H. Movahednejad, "Analysis and simulation of load frequency control in power system with reheater steam turbine," Journal of Applied Dynamic Systems and Control, vol. 5, no. 1, pp. 84-90, June 2022, dor: 20.1001.1.26764342.2022.5.1.12.0.
[6] G. Shahgholian, M. Maghsoodi, M. Mahdavian, S. Farazpey, M. Janghorbani and M. Azadeh, "Design of fuzzy+PI controller in application of TCSC and PSS for power system stability improvement," Proceeding of the IEEE/ECTI-CON, pp. 1-6, Chiang Mai, Thailand, June/July 2016, doi: 10.1109/ECTICon.2016.7560908.
[7] G. Magdy, E. A. Mohamed, G. Shabib, A. A. Elbaset and Y. Mitani, "Microgrid dynamic security considering high penetration of renewable energy," Protection and Control of Modern Power Systems, vol. 3, Article Number: 23, 2018, doi: 10.1186/s41601-018-0093-1.
[8] A. Karimi, Y. Khayat, M. Naderi, T. Dragičević, R. Mirzaei, F. Blaabjerg and H. Bevrani, "Inertia response improvement in ac microgrids: A fuzzy-based virtual synchronous generator control," IEEE Trans. on Power Electronics, vol. 35, no. 4, pp. 4321-4331, April 2020, doi: 10.1109/TPEL.2019.2937397.
[9] H.R. Chamorro, F.R.S. Sevilla, F. Gonzalez-Longatt, K. Rouzbehi, H. Chavez and V.K. Sood, "Innovative primary frequency control in low-inertia power systems based on wide-area RoCoF sharing," IET Energy Systems Integration, vol. 2, no. 2, pp. 151-160, June 2020, doi: 10.1049/iet-esi.2020.0001.
[10] G. Shahgholian, M. Ebrahimi-Salary, "Effect of load shedding strategy on interconnected power systems stability when a blackout occurs," International Journal of Computer and Electrical Engineering, vol. 4, no. 2, pp. 212-216, April 2012, doi: 10.7763/IJCEE.2012.V4.481.
[11] P. Fan, S. Ke, J. Yang, R. Li, Y. Li, S. Yang, J. Liang, H. Fan and T. Li, "A load frequency coordinated control strategy for multimicrogrids with V2G based on improved MA-DDPG," International Journal of Electrical Power and Energy Systems, vol. 146, Article Number: 108765, March 2023, doi: 10.1016/j.ije¬pes.2022.108765.
[12] M. Bonyani, M. Ghanbarian and M. Simab, "Demand side management based on model predictive control in microgrid in grid connected mode," Journal of Southern Communication Engineering, vol. 13, no. 52, Sept. 2024, doi: 10.30495/jce.2023.1996352.1280.
[13] M. Cheng, W. Yan, D. Zhang, X. Liu, L. He, M. Xu and Q. Yao, "Frequency stability of new energy power systems based on VSG adaptive energy storage coordinated control strategy," Energy Informatics, vol. 7, Article Number: 54, July 2024, doi: 10.1186/s42162-024-00359-7.
[14] C. Citro, M. Al-Numay and P. Siano, "Extensive assessment of virtual synchronous generators in intentional island mode," International Journal of Electrical Power and Energy Systems, vol. 157, Article Number: 109853, June 2024, doi: 10.1016/j.ijepes.2024.109853.
[15] H.U. Rehman, X. Yan, M.A. Abdelbaky, M.U. Jan and S. Iqbal, "An advanced virtual synchronous generator control technique for frequency regulation of grid-connected PV system," International Journal of Electrical Power and Energy Systems, vol. 125, Article Number: 106440, Feb. 2021, doi: 10.1016/j.ijep¬es.2020.106440.
[16] G. Shahgholian, B. Fani, B. Keyvani, H. Karimi and M. Moazzami, "An improve in the rea-ctive power sharing by uses to modify droop characteristics in autonomous microgrids," Energy Engineering and Management, vol. 9, no. 3, pp. 64-71, Oct. 2019, doi: 10.22052/9.3.64.
[17] J. Alipoor, Y. Miura and T. Ise, "Power system stabilization using virtual synchronous generator with alternating moment of inertia," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 2, pp. 451-458, June 2015, doi: 10.1109/JESTPE.2014.2362530.
[18] Z. Wang, F. Meng, Y. Zhang, W. Wang, G. Li and J. Ge, "Cooperative adaptive control of multi-parameter based on dual-parallel virtual synchronous generators system," IEEE Trans. on Energy Conversion, vol. 38, no. 4, pp. 2396-2408, Dec. 2023, doi: 10.1109/TEC.2023.3283048.
[19] M. Chen, D. Zhou and F. Blaabjerg, "Modelling, implementation, and assessment of virtual synchronous generator in power systems," Journal of Modern Power Systems and Clean Energy, vol. 8, no. 3, pp. 399-411, May 2020, doi: 10.35833/MPCE.2019.000592.
[20] K.M. Cheema, "A comprehensive review of virtual synchronous generator," International Journal of Electrical Power and Energy Systems, vol. 120, Article Number: 106006, Sept. 2020, doi: 10-.1016/¬j.ijepes.2020.106006.
[21] Y. Chen and W. Wang, "A novel improved droop control for grid-supporting inverter combined with the virtual synchronous generator control," Journal of Electrical Engineering and Technology, vol. 18, pp. 1601–1611, May 2023, doi: 10.1007/s42835-022-01297-8.
[22] I. Serban and C. P. Ion, "Microgrid control based on a grid-forming inverter operating as virtual synchronous generator with enhanced dynamic response capability," International Journal of Electrical Power and Energy Systems, vol. 89, pp. 94-105, July 2017, doi: 10.1016/j.ijepes.2017.01.009.
[23] X. Liang, C. Andalib-Bin-Karim, W. Li, M. Mitolo and M. N. S. K. Shabbir, "Adaptive virtual impedance-based reactive power sharing in virtual synchronous generator controlled microgrids," IEEE Trans. on Industry Applications, vol. 57, no. 1, pp. 46-60, Jan./Feb. 2021, doi: 10.1109/TIA.2020.3039223.
[24] C. Sun, S. Q. Ali, G. Joos and F. Bouffard, "Design of hybrid-storage-based virtual synchronous machine with energy recovery control considering energy consumed in inertial and damping support," IEEE Trans. on Power Electronics, vol. 37, no. 3, pp. 2648-2666, March 2022, doi: 10.1109/TPEL.2021.3111482.
[25] M. Malekpour, A. Kiyoumarsi and M. Gholipour, "A hybrid adaptive virtual inertia controller for virtual synchronous generators," International Transactions on Electrical Energy Systems, vol. 31, no. 7, April 2021, doi: 10.1002/2050-7038.12913.
[26] F. Wang, L. Zhang, X. Feng and H. Guo, "An adaptive control strategy for virtual synchronous generator," IEEE Trans. on Industry Applications, vol. 54, no. 5, pp. 5124-5133, Sept./Oct. 2018, doi: 10.1109/TIA.2018.2859384.
[27] T. Shi, J. Sun, X. Han and C. Tang, "Research on adaptive optimal control strategy of virtual synchronous generator inertia and damping parameters," IET Power Electronics, vol. 17, no. 1, pp. 121-133, Jan. 2024, doi: 10.1049/pel2.12620.
[28] J. Liu, Y. Miura and T. Ise, "Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators," IEEE Trans. on Power Electronics, vol. 31, no. 5, pp. 3600-3611, May 2016, doi: 10.1109/TPEL.2015.2465852.
[29] J. Xiao, Y. Jia, B. Jia, Z. Li, Y. Pan and Y. Wang, "An inertial droop control based on comparisons between virtual synchronous generator and droop control in inverter-based distributed generators, "Energy Reports, vol. 6, pp. 104-112, Dec. 2020, doi: 10.1016/j.egyr.2020.12.003.
[30] K. Shi, H. Ye, W. Song and G. Zhou, "Virtual inertia control strategy in microgrid based on virtual synchronous generator technology," IEEE Access, vol. 6, pp. 27949-27957, May 2018, doi: 10.1109/ACCESS.2018.2839737.
[31] M.M. Elwakil, H.M.E. Zoghaby, S.M. Sharaf and M.A. Mosa, "Adaptive virtual synchronous generator control using optimized bang-bang for islanded microgrid stability improvement," Protection and Control of Modern Power Systems, vol. 8, Article Number: 57, Nov. 2023, doi: 10.1186/s41601-023-00333-7.
[32] M. Shadoul, R. Ahshan, R.S. AlAbri, A. Al-Badi, M. Albadi and M. Jamil, "A comprehensive review on a virtual-synchronous generator: topologies, control orders and techniques, energy storages, and applications," Energies, vol. 15, no. 22, Article Number: 8406, Nov. 2022, doi: 10.3390/en15228406.
[33] J. Liang, H. Fan, L. Cheng, S. Rong, T. Li, T. Yu and L. Wang, "Control strategy for improving the frequency response characteristics of photovoltaic and energy storage systems based on VSG control," Energy Reports, vol. 11, pp. 2295-2305, June 2024, doi: 10.1016/j.egyr.2024.01.036.
[34] D.Q. Yang, M.J. Li, T. Ma, J.W. Ni and Z.Y. Han, "Study on adaptive VSG parameters and SOC control strategy for PV-HESS primary frequency regulation," Energy, vol. 314, Article Number: 133909, Jan. 2025, doi: 10.1016/j.energy.2024.133909.
[35] A. Suvorov, A. Askarov, N. Ruban, V. Rudnik, P. Radko, A. Achitaev and K. Suslov, "An adaptive inertia and damping control strategy based on enhanced virtual synchronous generator model," Mathematics, vol. 11, no. 18, Article Number: 3938, Sept. 2023, doi: 10.3390/math11183938.
[36] S. D'Arco and J. A. Suul, "Virtual synchronous machines- Classification of implementations and analysis of equivalence to droop controllers for microgrids," Proceeding of the IEEE/PTC, pp. 1-7, Grenoble, France, June 2013, doi: 10.1109/PTC.2013.6652456.
[37] V. Thomas, S. Kumaravel and S. Ashok, "Virtual synchronous generator and its comparison to droop control in microgrids," Proceeding of the IEEE/PICC, pp. 1-4, Thrissur, India, Jan. 2018, doi: 10.1¬109/PICC.20¬18.8384798.
[38] A. Villa, F. Belloni, R. Chiumeo and C. Gandolfi, "Conventional and reverse droop control in islanded microgrid: Simulation and experimental test," Proceeding of the IEEE/SPEEDAM, pp. 288-294, Capri, Italy, June 2016, doi: 10.1109/SPEEDAM.2016.7526020.
[39] B. Fani, H. Bisheh and A. Karami-Horestani, "An offline penetration-free protection scheme for PV-dominated distribution systems," Electric Power Systems Research, vol. 157, pp. 1-9, April 2018, doi: 10.1016/j.¬epsr.2017.11.020.
[40] G. Shahgholian, M. Moazzami and M. Dehghani, "A brief review of the application and control strategies of alternating current microgrids in the power system," Technovations of Electrical Engineering in Green Energy System, vol. 4, no. 2, pp. 17-34, Sept. 2025, doi: 10.30486/TEEGES.2025.1121457.
[41] X. Wang and H. Wang, "Improved droop control strategy of multiple energy storage applications in an ac microgrid based on the state of charge," Electronics, vol. 10, no. 14, Article Number: 1726, July 2021, doi: 10.3390/electronics10141726.
[42] R. Ayop and C. W. Tan, "Design of boost converter based on maximum power point resistance for photovoltaic applications," Solar Energy, vol. 160, pp. 322-335, Jan. 2018, doi: 10.1016/j.solener.2017.12.016.
[43] F. Lu and H. Liu, "An accurate power flow method for microgrids with conventional droop control," Energies , vol. 15, no. 16, Article Number: 5841, Aug. 2022, doi: 10.3390/en15165841.
[44] H. Wang, C. Yang, X. Liao, J. Wang, W. Zhou and X. Ji, "Artificial neural network-based virtual synchronous generator dual droop control for microgrid systems," Computers and Electrical Engineering, vol. 111, Article Number: 108930, Oct. 2023, doi: 10.1016/j.compeleceng.2023.108930.
[45] X. Gao, D. Zhou, A. Anvari-Moghaddam and F. Blaabjerg, "An adaptive control strategy with a mutual damping term for paralleled virtual synchronous generators system," Sustainable Energy, Grids and Networks, vol. 38, Article Number: 101308, June 2024, doi: 10.1016/j.segan.2024.101308.
[46] B. Ren, Q. Li, Z. Fan and Y. Sun, "Adaptive control of a virtual synchronous generator with multiparameter coordination," Energies, vol. 16, no. 12, Article Number: 4789, June 2023, doi: 10.3390/e¬n16124789.
[47] K.M. Cheema and K. Mehmood, "Improved virtual synchronous generator control to analyse and enhance the transient stability of microgrid," IET Renewable Power Generation, vol. 14, no. 4, pp. 495-505, March 2020, doi: 10.1049/iet-rpg.2019.0855.
[48] V. Mallemaci, F. Mandrile, S. Rubino, A. Mazza, E. Carpaneto and R. Bojoi, "A comprehensive comparison of virtual synchronous generators with focus on virtual inertia and frequency regulation," Electric Power Systems Research, vol. 201, Article Number: 107516, Dec. 2021, doi: 10.1016/j.epsr.2021.107516.
[49] J. Chen and T. O'Donnell, "Analysis of virtual synchronous generator control and its response based on transfer functions," IET Power Electronics, vol. 12, no. 11, pp. 2965-2977, Sept. 2019, doi: 10.1049/iet-pel.2018.5711.
[50] H.S. Salama, A. Bakeer, G. Magdy and I. Vokony, "Virtual inertia emulation through virtual synchronous generator based superconducting magnetic energy storage in modern power system," Journal of Energy Storage, vol. 44, Article Number: 103466, Dec. 2021, doi: 10.1016/j.est.2021.103466.
[51] G. Wang, C. Wang, Q. Hao and M. Shahidehpour, "Load frequency control method for cyber-physical power systems with 100% renewable energy," IEEE Trans. on Power Systems, vol. 39, no. 2, pp. 4684-4698, March 2024, doi: 10.1109/TPWRS.2023.3301303.