معماری بیوفیلیک و فناوریهای هوشمند در آپارتمانهای میانمرتبه شهر مشهد
محورهای موضوعی : دو فصلنامه فضای زیست
الهام مقیمی شهری
1
,
محسن وفامهر
2
1 - پژوهشگر دکتری، گروه معماری، واحد مشهد، دانشگاه آزاد اسلامی، مشهد، ایران
2 - استاد تمام گروه معماری، عضو هیات علمی دانشکده هنر و معماری، دانشگاه آزاد اسلامی و دانشگاه فردوسی، مشهد، ایران.
کلید واژه: آپارتمان میانمرتبه, فناوری هوشمند, معماری بیوفیلیک, معماری مسکونی, تاپسیس, مشهد,
چکیده مقاله :
تکامل سریع چشماندازهای معماری، رشد نرخ شهرنشینی و ظهور فناوریهای هوشمند اهمیت ادغام اصول و کارکردهای بیوفیلیک را در میان گستره وسیع محیطهای مسکونی امروز بیش از گذشته برجسته ساخته است. هدف مقاله حاضر ارزیابی و اولویتبندی ادغام فناوریهای هوشمند بیوفیلیکمحور در آپارتمانهای میانمرتبه مشهد است. با استفاده از طراحی پژوهشی کمی و کاربردی با رویکرد تحلیلی-توصیفی، این تحقیق از یک پرسشنامه جامع شامل 10 اصل بیوفیلیک و 29 فناوری هوشمند بهره برد. اعتبار و قابلیت اطمینان پرسشنامه به طور دقیق از طریق ارزیابیهای تخصصی دانشگاهی و ضریب آلفای کرونباخ تأئید شد. با نمونهگیری هدفمند به شکل گلوله برفی 100 کارشناس معمار، مهندس و برنامهریز شهری انتخاب شدند که دانش عمیقی در زمینه طراحی بیوفیلیک و فناوریهای هوشمند داشتند. آنها اهمیت اصول بیوفیلیک را با مقیاس لیکرت 5 امتیازی و سطحهای ادغام فناوریهای هوشمند را با مقیاس لیکرت 7 امتیازی ارزیابی کردند. تحلیل دادهها با استفاده از انتروپی شانون برای تعیین وزن هر اصل-کارکرد بیوفیلیک و روش تاپسیس برای رتبهبندی فناوریهای هوشمند انجام شد. یافتهها نشان داد تقویت حس سرزندگی، افزایش ارتباط با سامانههای طبیعی، جذابیت بصری و تجارب طبیعی غوطهور جزو مهمترین کارکردهای بیوفیلیکمحور فناوریهای هوشمند هستند. همچنین، سامانههای مدیریت ساختمان و دیوارهای سبز هوشمند بالاترین سطح ادغام و فناوریهای کشاورزی عمودی و باغهای هیدروپونیک کمترین سطح ادغام را نشان دادند. در راستای حل ادغام پائین برخی فناوریهای هوشمند بیوفیلیکمحور، برگزاری کارگاههای آموزشی، فراهم کردن مشوقهای مالی پذیرش فناوریهای انرژیکارا و ترویج آن مطالعات موردی موفق پیشنهاد گردید که نشاندهنده ادغام مؤثر فناوریهای هوشمند با کارکردهای بیوفیلیک استباشد. این راهبردها با هدف افزایش پذیرش و کارایی فناوریهای هوشمند دارای کارکردهای بیشتر بیوفیلیک، کیفیت زندگی و پایداری در آپارتمانهای میانمرتبه مشهد را بهبود میبخشند. این پژوهش بینشهای قابل اجرایی را برای معماران، برنامهریزان شهری و سیاستگذاران میتواند فراهم کند تا فضاهای مسکونی پایدارتر و ارتقاءدهنده سلامت ایجاد کنند.
The rapid evolution of architectural landscapes, urbanization, and smart technologies have highlighted the importance of integrating biophilic functions within the broad ranges of residential environments. The current paper aims to evaluate and prioritize the integration of biophilic-oriented smart technologies in mid-rise apartments in Mashhad. Utilizing a quantitative research design with an analytical-descriptive approach, it employed a questionnaire encompassing ten biophilic principles and 29 smart technologies. The questionnaire’s validity and reliability were confirmed through expert academic evaluations and a Cronbach's alpha. A purposive snowball sampling technique selected 100 experts, including architects, engineers, and urban planners, who possess substantial knowledge of biophilic design and smart technologies. These participants assessed the importance of biophilic principles using a 5-point Likert scale and the integration levels of smart technologies using a 7-point Likert scale. Data analysis was conducted using Shannon Entropy to determine the weights of each biophilic function and the TOPSIS for ranking the smart technologies. The findings revealed that fostering vitality, enhancing connections with natural systems, aesthetic appeal and immersive nature experiences are the most critical biophilic-oriented functions of smart technologies. In terms of technology integration, building management systems and smart green walls achieved the highest levels of integration, whereas vertical farming and hydroponic gardens exhibited the lowest levels. To address the low integration of certain biophilic-oriented smart technologies, the study recommends increasing awareness through educational workshops, providing financial incentives for adopting energy-efficient technologies, and promoting successful case studies that demonstrate effective integration of smart technologies with biophilic functions. These strategies aim to enhance the adoption and functionality of biophilic-smart integrations, thereby improving the quality of life and sustainability in mid-rise residential environments in Mashhad. This research can offer actionable insights for architects, urban planners, and policymakers to create more sustainable and health-promoting residential spaces.
اسدی، شایان، خطیبی، سیدمحمدرضا (1400). تدوین معیارهای طراحی شهری بیوفیلیک برای ساماندهی بافت مرکزی شهرها. دو فصلنامه فضای زیست، 1(1)، 91 – 115.
تندروصالح، وحیده حجتی، خسرو موحد (1403). مقایسه تطبیقی مولفههای تأثیرگذار معماری بیوفیلیک در طراحی مجتمعهای مسکونی معاصر و مسکن سنتی(نمونه مطالعاتی: شهر شیراز). دو فصلنامه فضای زیست، 4(1)، 21-46.
مقیمی شهری، الهام، وفامهر، محسن (1403). ارزیابی و رتبهبندی اصول طراحی بیوفیلیک در معماری مسکونی مشهد. معماری و محیط پایدار، 2(1)، 74-92.
Abioye, Sofiat O, Oyedele, Lukumon O, Akanbi, Lukman, Ajayi, Anuoluwapo, Delgado, Juan Manuel Davila, Bilal, Muhammad, Akinade, Olugbenga O, & Ahmed, Ashraf. (2021). Artificial intelligence in the construction industry: A review of present status, opportunities and future challenges. Journal of Building Engineering, 44, 103299.
Agboola, Oluwagbemiga Paul, Nia, Hourakhsh Ahmad, Findikgil, Meryem Müzeyyen, & Yildirim, Semih Goksel. (2024). Assessing the effectiveness of biophilic design approach in contribution to sustainable architectural goals. New Design Ideas, 8(SI). https://doi.org/10.62476/ndisi144
Al Khatib, Inas, Samara, Fatin, & Ndiaye, Malick. (2024). A systematic review of the impact of therapeutical biophilic design on health and wellbeing of patients and care providers in healthcare services settings. Frontiers in Built Environment, 10, 1467692. https://doi.org/10.3389/fbuil.2024.1467692/full
Beatley, Timothy. (2016). Biophilic Cities: Integrating Nature into Urban Design and Planning. Island Press.
Benavente-Peces, César. (2019). On the energy efficiency in the next generation of smart buildings—Supporting technologies and techniques. Energies, 12(22), 4399. https://doi.org/10.3390/en12224399
Biswas, Pranab, Pramanik, Surapati, & Giri, Bibhas C. (2018). TOPSIS strategy for multi-attribute decision making with trapezoidal neutrosophic numbers. Neutrosophic Sets and Systems, 19(1), 29-39.
Browning, William D., Ryan, Catherine O., & Clancy, Jennifer O. (2014). 14 Patterns of Biophilic Design. Terrapin Bright Green.
Ching, Francis DK (2020). Building construction illustrated. John Wiley & Sons.
Contreras, Gastón Sanglier, Lezcano, Roberto A González, Fernández, Eduardo J López, Concepción, María, & Gutiérrez, Pérez. (2023). Architecture Learns from Nature. The Influence of Biomimicry and Biophilic Design in Building. Modern Applied Science, 17(1), 1-58. https://doi.org/10.5539/mas.v17n1p58
Fisher, Kenneth. (2024). The Biophilic School: A Critical Synthesis of Evidence-Based Systematic Literature Reviews. Architecture, 4(3), 457-478. https://doi.org/10.3390/architecture4030025
Ghaffarianhoseini, Amirhosein, AlWaer, Husam, Omrany, Hossein, Ghaffarianhoseini, Ali, Alalouch, Chaham, Clements-Croome, Derek, & Tookey, John. (2019). Sick building syndrome: are we doing enough Architectural Science Review, 61(3), 99-121. https://doi.org/10.1080/00038628.2018.1461060
GhaffarianHoseini, Amirhosein, GhaffarianHoseini, Ali, Tookey, John, Omrani, Hossein, Fleury, Anthony, Naismith, Nicola, & GhaffarianHoseini, Mahdiar. (2016). Future of smart homes: Application of intelligent technologies towards smarter urban future. https://doi.org/10.4018/978-1-5225-1759-7.ch004
Ghamari, Mehrdad, and Senthilarasu Sundaram (2024). Solar Window Innovations: Enhancing Building Performance through Advanced Technologies. Energies, 17(14), 1-31. https://doi.org/10.3390/en17143369
Hassan, Mohammad Mujaheed, Tedong, Peter Aning, Khir, Azlina Mohd, Shari, Zalina, Ponrahono, Zakiah, & Sharifudin, Muhammad Phaizal (2023). Exploring the Effects of the Built Environment on Urban Community Wellbeing. http://doi.org/10.6007/IJARBSS/v13-i10/18699
Heerwagen, Judith H. (2003). Bio-inspired design: What can we learn from nature. JR Soc. BioInspire, 1(121), 20160347.
Heerwagen, Judith. H. (2013). Biophilic design: A path to sustainability. Environmental Design Research Association Conference Proceedings, 1-10.
Kaplan, Rachel, & Kaplan, Stephen. (1989). The experience of nature: A psychological perspective. Cambridge University Press.
Kellert, Stephen R. (2008). Dimensions, elements, and attributes of biophilic design. Yale University Press.
Kellert, Stephen R. (2008). The biophilia hypothesis. In K. H. Kahn & S. R. Kellert (Eds.), Children and Nature: Psychological, Sociocultural, and Evolutionary Investigations (pp. 27-40). MIT Press.
Kellert, Stephen R. (2011). Biophilic Design: The Theory, Science, and Practice of Bringing Buildings to Life. John Wiley & Sons.
Kellert, Stephen R., & Calabrese, Elizabeth F. (2015). The Practice of Biophilic Design. Island Press.
Kellert, Stephen R., Heerwagen, Judith H., & Mador, Martin. (2011). Biophilic design: The theory, science, and practice of bringing buildings to life. Wiley.
Kellert, Stephen R., Heerwagen, Judith, H. & Mador, Martin. (2008). Biophilic Design: The Theory, Science, and Practice of Bringing Buildings to Life. Wiley.
Khodadadi, Anahita. (2019, October). Eco-friendly mid-rise apartments using CLT panels. In Proceedings of IASS Annual Symposia (Vol. 2019, No. 20, pp. 1-8). International Association for Shell and Spatial Structures (IASS).
Kibert, Charles J. (2016). Sustainable Construction: Green Building Design and Delivery. John Wiley & Sons.
Küller, Rikard, Ballal, Seifeddin, Laike, Thorbjörn, Mikellides, Byron, & Tonello, Graciela. (2006). The impact of light and colour on psychological mood: a cross-cultural study of indoor work environments. Ergonomics, 49(14), 1496-1507. https://doi.org/10.1080/00140130600858142
Kumar, Arun, Sharma, Sharad, Goyal, Nitin, Singh, Aman, Cheng, Xiaochun, & Singh, Parminder. (2021). Secure and energy-efficient smart building architecture with emerging technology IoT. Computer Communications, 176, 207-217. https://doi.org/10.1016/j.comcom.2021.06.003
Lantonio, Nicole A, & Krarti, Moncef. (2022). Simultaneous design and control optimization of smart glazed windows. Applied Energy, 328, 120239. https://doi.org/10.1016/j.apenergy.2022.120239
Lee, Eun Ji, & Park, Sung Jun. (2020). A framework of smart-home service for elderly’s biophilic experience. Sustainability, 12(20), 8572. https://doi.org/10.3390/su12208572
Lesh, Kelly A., & McGee, Beth L. 2020. Biophilic Interior Design Preferences of Generation Z for Hotel Guest Room Visual Art and Technology. School of Human Ecology Faculty Presentations. Presentation 605. https://digitalcommons.georgiasouthern.edu/ecology-facpres/605
Lesh, Kelly. (2020). Generation Z preferences: Biophilic interior design incorporated through visual art and technology. Thesis, College of Behavioral and Social Sciences]. Georgia Southern University.
Marcus, Clare Cooper, & Sachs, Naomi A. (2013). Therapeutic landscapes: An evidence-based approach to designing healing gardens and restorative outdoor spaces. John Wiley & Sons.
Milliken, Sarah, Kotzen, Benz, Walimbe, Sonali, Coutts, Christopher, & Beatley, Timothy. (2023). Biophilic cities and health. Cities & Health, 7(2), 175-188. https://doi.org/10.1080/23748834.2023.2176200
Mondal, Sayan, Deyashi, Darothee, Mukherjee, Debjit, & Sarker, Krishna (2024). Advancing sustainability and comfort through smart sensors and iot: a comprehensive analysis of automatic light control systems in residential and commercial environments. i-manager's Journal on Electrical Engineering, 17(3). https://doi.org/10.26634/jee.17.3.20686
Narula, Rehet Kaur. (2024). The Effectiveness of Biophilic Design as an Architectural and Design Approach to Enhance Mental Well-Being. https://doi.org/10.58445/rars.1401
Okul, Elif Sude (2024). Design Solutions for Green Walls in Interior Spaces (Doctoral dissertation, Politecnico di Torino).
Omrany, Hossein, Al-Obaidi, Karam M, Hossain, Mohataz, Alduais, Nayef AM, Al-Duais, Husam S, & Ghaffarianhoseini, Amirhosein. (2024). IoT-enabled smart cities: a hybrid systematic analysis of key research areas, challenges, and recommendations for future direction. Discover Cities, 1(1), 2. https://doi.org/10.1007/s44327-024-00002-w
Pistore, Lorenza, Konstantinou, Thaleia, Pasut, Wilmer, & Naboni, Emanuele (2023). A framework to support the design of a regenerative indoor environment. Frontiers in Built Environment, 9, 1225024.
Ramadhan, Rizqi, & Gandha, Maria Veronica (2024). Eksplorasi pengaruh desain bangunan terhadap kesejahteraan mental dan penanggulangan depresi. Jurnal Sains, Teknologi, Urban, Perancangan, Arsitektur (Stupa), 6(1), 83-96.
Sen, Elif A. (2024). Revolutionizing Architecture: The Impact of Smart Homes on Future Designs. Illustrarch. Retrieved from https://illustrarch.com/articles/architectural-technology/25274-impact-of-smart-homes-on-future-designs.html
Shaikh, Humaira, & Sava-Segal, Clara (2024). Biophilic architecture: Using cognitive science principles to understand impact on well-being. Journal of Student Research, 13(1). https://doi.org/10.47611/jsrhs.v13i1.6257
Shaji, Karan Mathews, Dudhe, Ravishankar, & Alex, Ahana Fatima (2024). Survey Concerning Building Automation And Control System Solutions That Augment Green Communication. In 2024 Advances in Science and Engineering Technology International Conferences (ASET) (pp. 1-6). IEEE. https://doi.org/10.1109/ASET60340.2024.10708649
Turki, Wouroud, Bouaziz, Amal, Taieb, Amine Hadj, & Gargouri, Chema (2023). Guidelines for Greening Healthcare Spaces. Journal of Salutogenic Architecture, 2(1), 113-124. https://doi.org/10.38027/jsalutogenic_vol2no1_8
Ulrich, Roger S. (1984). View through a window may influence recovery from surgery. Science, 224(4647), 420-421. https://doi.org/10.1126/science.6143402
WELL Building Standard. (2020). WELL Building Standard v2. Retrieved from https://v2.wellcertified.com/en/wellv2/concepts
Yadav, Ms Uma, Patel, Harsha, & Bhatia, Tanu (2024). Smart Solutions for Sustainable Development: A Case Study of Energy-Efficient Green Building with Intelligent Techniques.
Yang, Xianzhe, Ozaki, Akihito, Takatsuji, Ryo, Nagase, Osamu, Arima, Yusuke, & Choi, Younhee (2023). Effects of biophilic design on hygrothermal environment and human sensation in a large artificial garden of a public building. In E3S Web of Conferences (Vol. 396, p. 01085). EDP Sciences. https://doi.org/10.1051/e3sconf/202339601085
Yi, Kai, & Xu, Zhihua (2023). Exploring the Aesthetic Principles of Traditional Lingnan Architecture in Guangzhou Influencing Economic Development and Socio-economic Perspective—A Notch from Public Well-being and Modernity. Journal of Information Systems Engineering and Management, 8(3), 22838.
Yin, Jie, Zhu, Haoyue, & Yuan, Jing (2024). Health Impacts of Biophilic Design from a Multisensory Interaction Perspective: Empirical Evidence, Research Designs, and Future Directions. Land, 13(9), 1448. https://doi.org/10.3390/land13091448
Zhong, Weijie, Schröder, Torsten, & Bekkering, Juliette (2022). Biophilic design in architecture and its contributions to health, well-being, and sustainability: A critical review. Frontiers of Architectural Research, 11(1), 114-141. https://doi.org/10.1016/j.foar.2021.07.006
Zhong, Weijie, Schröder, Torsten, & Bekkering, Juliette (2024). Implementing biophilic design in architecture through three-dimensional green spaces: Guidelines for building technologies, plant selection, and maintenance. Journal of Building Engineering, 92, 109648. https://doi.org/10.1016/j.jobe.2024.109648