شناسایی عوامل مؤثر بر کیفیت محصولات صنعتی با تحلیل خوشهبندی دادهها
محورهای موضوعی : مدیریت کسب و کاررئوف امامی رازلیقی 1 , احمد علی اوموئی میلان 2 , صادق عابدی 3
1 - دانشجوی دکتری، گروه مدیریت صنعتی، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران
2 - دانشجوی دکتری، گروه مدیریت صنعتی، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران
3 - استادیار، گروه مدیریت صنعتی، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران
کلید واژه: کیفیت محصولات صنعتی, دادهکاوی, تحلیل خوشهبندی, بهینهسازی تولید,
چکیده مقاله :
شناسایی دقیق عوامل مؤثر بر کیفیت محصولات میتواند به بهبود فرآیندهای تولید، کاهش ضایعات، افزایش بهرهوری و در نهایت ارتقاء رضایت مشتریان منجر شود . این پژوهش با هدف شناسایی عوامل مؤثر بر کیفیت محصولات صنعتی و تحلیل روابط میان این عوامل با استفاده از تکنیکهای دادهکاوی و خوشهبندی انجام شد. داده های مرتبط با فرآیند تولید صنعتی شامل متغیرهایی نظیر خلوص مواد اولیه، نرخ خطای دستگاه، دما، فشار، سرعت تولید و تجربه نیروی انسانی شبیهسازی و پیشپردازش شدند. برای تحلیل دادهها، الگوریتمهای K-Means، خوشهبندی سلسلهمراتبی و DBSCAN بهکار گرفته شدند . نتایج نشان داد که خلوص مواد اولیه، نرخ خطای دستگاه، و دما از جمله مهمترین عوامل تأثیرگذار بر کیفیت محصولات هستند. همچنین، خوشههایی با خلوص مواد اولیه بالا (>95%) و نرخ خطای دستگاه کمتر از 2% بهترین کیفیت را نشان دادند، در حالی که خوشههایی با خلوص پایین و سرعت تولید بالا کیفیت ضعیفی داشتند. این پژوهش الگویی جامع برای تحلیل و بهینهسازی کیفیت محصولات صنعتی ارائه میدهد که میتواند در صنایع مختلف نظیر خودروسازی، داروسازی، و صنایع غذایی مورد استفاده قرار گیرد.
Abstract
Accurate identification of factors affecting product quality can lead to improved production processes, reduced waste, increased productivity, and ultimately improved customer satisfaction. This study aimed to identify factors affecting the quality of industrial products and analyze the relationships between these factors using data mining and clustering techniques. Data related to the industrial production process, including variables such as raw material purity, machine error rate, temperature, pressure, production speed, and human experience, were simulated and preprocessed. K-Means, hierarchical clustering, and DBSCAN algorithms were used to analyze the data. The results showed that raw material purity, machine error rate, and temperature are among the most important factors affecting product quality. Also, clusters with high raw material purity (>95%) and machine error rate less than 2% showed the best quality, while clusters with low purity and high production speed had poor quality. This research provides a comprehensive model for analyzing and optimizing the quality of industrial products that can be used in various industries such as automotive, pharmaceutical, and food industries
1. Smith, J. A., & Johnson, L. M. (2015). "Data Mining Techniques for Industrial Process Control." Journal of Manufacturing Systems, 37, 123-134.
2. Brown, K. W., & Davis, P. R. (2016). "Clustering Algorithms in Quality Management: A Comparative Study." International Journal of Production Research, 54(8), 2450-2462.
3. Williams, R. T., & Martinez, S. A. (2017). "Impact of Material Purity on Product Quality in Manufacturing." Materials Science and Engineering, 412, 89-98.
4. Garcia, M. L., & Thompson, E. J. (2018). "Machine Learning Approaches to Predictive Maintenance in Industrial Settings." IEEE Transactions on Industrial Informatics, 14(3), 1360-1368.
5. Lee, H. J., & Kim, S. Y. (2019). "Application of Hierarchical Clustering in Supply Chain Management." Computers & Industrial Engineering, 127, 676-685.
6. Nguyen, T. P., & Wang, Y. (2020). "Evaluating the Effectiveness of K-Means Clustering in Quality Control." Expert Systems with Applications, 149, 113251.
7. Chen, X., & Zhang, Y. (2021). "Role of Employee Training in Enhancing Product Quality: A Data-Driven Analysis." Total Quality Management & Business Excellence, 32(5-6), 567-580.
8. Patel, D. R., & Singh, A. K. (2022). "Optimization of Manufacturing Parameters Using Genetic Algorithms." Journal of Intelligent Manufacturing, 33(2), 345-358.
9. Hernandez, L. M., & Lopez, R. G. (2023). "Real-Time Monitoring of Production Processes Using AI Techniques." Procedia CIRP, 107, 123-128.
10. Kumar, S., & Verma, P. (2015). "Impact of Process Parameters on Product Quality in the Automotive Industry." International Journal of Automotive Technology and Management, 15(4), 321-334.
11. Anderson, P. J., & Moore, G. E. (2016). "Clustering Methods for Defect Detection in Manufacturing." IEEE Transactions on Automation Science and Engineering, 13(2), 976-985.
12. Wang, L., & Li, X. (2017). "Data-Driven Quality Improvement in Electronics Manufacturing." Journal of Manufacturing Processes, 28, 124-132.
13. Zhao, H., & Sun, J. (2018). "Application of Support Vector Machines in Predicting Product Quality." Computers in Industry, 99, 153-161.
14. Miller, T. R., & Davis, L. J. (2019). "Enhancing Product Quality through Advanced Data Analytics." International Journal of Production Economics, 210, 1-9.
15. Singh, R., & Gupta, A. (2020). "Role of Big Data in Quality Control of Industrial Products." Journal of Big Data, 7(1), 45.
16. Lopez, M. A., & Gonzalez, E. F. (2021). "Predictive Quality Analytics in Food Manufacturing." Food Control, 123, 107765.
17. Chen, L., & Huang, Z. (2022). "Integration of IoT and Machine Learning for Quality Prediction." IEEE Internet of Things Journal, 9(5), 3456-3465.
18. Park, J. H., & Lee, S. W. (2023). "Clustering-Based Fault Detection in Semiconductor Manufacturing." Microelectronics Reliability, 139, 114678.
19. Gomez, P. R., & Martinez, C. J. (2015). "Improving Product Quality through Statistical Process Control." Quality Engineering, 27(1), 56-65.
20. Khan, M. S., & Ali, R. (2016). "Application of Fuzzy Clustering in Quality Assessment." Applied Soft Computing, 49, 748-757.