حذف رنگ متیلن بلو از محلولهای آبی با استفاده از نانوکامپوزیت تیتانیوم دی اکسید بر پایه پلی کربنات/کربن اکتیو
محورهای موضوعی : آلودگی محیط زیست (آب و فاضلاب)
سمیره عبداله اصل
1
,
علی برسلانی
2
,
معصومه میرزائی
3
,
مصطفی نریمانی
4
,
آذین پیدایش
5
1 - دانشجو،گروه مهندسی شیمی، واحد امیدیه، دانشگاه آزاد اسلامی، امیدیه، ایران.
2 - استادیار، گروه مهندسی شیمی، واحد امیدیه، دانشگاه آزاد اسلامی، امیدیه، ایران.
3 - دانشیار، گروه مهندسی شیمی، واحد ماهشهر، دانشگاه آزاد اسلامی، ماهشهر، ایران. * (مسوول مکاتبات)
4 - استادیار، گروه مهندسی شیمی، واحد ماهشهر، دانشگاه آزاد اسلامی، ماهشهر، ایران.
5 - استادیار، گروه مهندسی شیمی، واحد ماهشهر، دانشگاه آزاد اسلامی، ماهشهر، ایران.
کلید واژه: متیلن بلو, جذب سطحی, کربن اکتیو, تیتانیوم دی اکسید, پلی کربنات, نانوجاذب.,
چکیده مقاله :
زمینه و هدف: با گذشت زمان، افزایش جمعیت و صنعتی شدن جهان اهمیت حفظ منابع بیشتر از قبل نمایان شد. در این بین آب به عنوان یکی از مهم ترین منابع جهان که تاثیری مستقیم بر سلامتی، امنیت و صلح در جوامع جهانی دارد همیشه در محافل علمی جایگاه ویژهای داشته است. برای حفظ منابع آبی، تصفیه آبهای دور ریز صنایع و فاضلابهای صنعتی و بیمارستانی از اهمیت ویزهای برخوردار بوده است. با توجه به این موضوع هدف این پژوهش ساخت یک جاذب کارآمد برای حذف رنگ متیلن بلو به عنوان آلاینده از پساب صنایع تعیین شد. برای نیل به این مقصود نانوجاذب تیتانیوم دی اکسید برپایه پلی کربنات/کربن اکتیو ساخته شد و از آن برای جذب رنگ دانههای متیلن بلو از محلول آبی استفاده گردید.
روش بررسی: در این تحقیق فرآیند جذب به صورت ناپیوسته بررسی شد و تاثیر پارامترهایی مانندpH محلول آبی، زمان تماس، مقدار جاذب، اندازه ذرات جاذب و غلظت اولیه رنگ به عنوان متغیر مورد پژوهش و مطالعه قرار گرفت. همچنین مطالعات ایزوترمی و سینتیکی نیز انجام گرفت.
یافتهها: نتایج نشان میدهد این نانوجاذب در محیط های بازی و خنثی عملکرد بهتری نسبت به محیطهای اسیدی دارد و نیز بهترین شرایط برای بالاترین جذب، مقدار جاذب g 05/0، زمان تماس 2 دقیقه و برای محلول رنگی متیلن بلو ppm 5 میباشد. همچنین مشخص گردید که سینتیک واکنش از مدل سینتیکی شبه مرتبه دوم پیروی میکند و مطالعات ایزوترمی نشان داد که فرآیند جذب رنگ متیلن بلو توسط این جاذب تطابق خوبی با ایزوترم لانگمویر دارد.
بحث و نتیجهگیری: در این مطالعه یک نانوجاذب با عملکرد بالا برای جذب رنگ متیلن بلو از محلولهای آبی ارائه گردید که امیدواری بالایی برای استفاده در اشلهای صنعتی نشان میدهد.
Background and Objective: Over time, the increasing global population and industrialization have made the importance of resource conservation more evident than ever. In this context, water, as one of the most important resources in the world, which has a direct impact on health, security, and peace in global communities, has always held a special place in scientific circles. To preserve water resources, the treatment of industrial and hospital wastewater and industrial effluents has been of special importance. Considering this issue, the aim of this research was to develop an efficient adsorbent for the removal of methylene blue dye as an industrial wastewater pollutant. To achieve this goal, a titanium dioxide nanoadsorbent based on polycarbonate/activated carbon was synthesized and utilized for the adsorption of methylene blue dye from aqueous solutions.
Materials and Methods: In this study, the adsorption process was examined in batch mode, and the effects of parameters such as the pH of the aqueous solution, contact time, amount of adsorbent, adsorbent particle size, and initial dye concentration were investigated and studied as variables. Additionally, isotherm and kinetic studies were also conducted.
Findings: The results indicate that this nanoadsorbent performs better in alkaline and neutral environments compared to acidic environments. The optimal conditions for maximum adsorption were found to be an adsorbent dosage of 0.05 g, a contact time of 2 minutes, and an initial methylene blue dye concentration of 5 ppm. It was also determined that the reaction kinetics follow a pseudo-second-order kinetic model, and isotherm studies showed that the methylene blue dye adsorption process by this adsorbent fits well with the Langmuir isotherm.
Discussion and Conclusion: In this study, a high-performance nanoadsorbent for the adsorption of methylene blue from aqueous solutions was presented, showing great promise for use on an industrial scale.
1. Vosoughi, M., Einollahzadeh, N. (2021). Evaluation of the Efficiency Adsorption Process with Zeolite@ in the Removal of Methylene Blue Dye from Aqueous Solutions. TB; 20 (4) :79-93. (In Persian)
2. Khandare, R. V., & Govindwar, S. P. (2015). Phytoremediation of textile dyes and effluents: current scenario and future prospects. Biotechnology Advances, 33(8), 1697-1714.
3. Ngah, W. W., Teong, L. C., & Hanafiah, M. M. (2011). Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate polymers, 83(4), 1446-1456.
4. Asgari, Gh., Akbari, S., Faradmal, J., Almasi, H., & Daraei, Z.. (2017). Removal of methylene blue dye from wastewater of textile industry in catalytic ozonation process by pumice modified by magnesium nitrate. Journal of Rafsanjan University of Medical Sciences and Health Services, 15(12), 1095-1106. (In Persian)
5. Wang, J., Li, C., Zhuang, H., & Zhang, J. (2013). Photocatalytic degradation of methylene blue and inactivation of Gram-negative bacteria by TiO2 nanoparticles in aqueous suspension. Food Control, 34(2), 372-377.
6. Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A. (2010). Adsorption of methylene blue on low-cost adsorbents: a review. Journal of hazardous materials, 177(1-3), 70-80.
7. Huang, X., Liao, X., & Shi, B. (2010). Tannin-immobilized mesoporous silica bead (BT–SiO2) as an effective adsorbent of Cr (III) in aqueous solutions. Journal of Hazardous Materials, 173(1-3), 33-39.
8. Naushad, M., Sharma, G., Kumar, A., Sharma, S., Ghfar, A. A., Bhatnagar, A., & Khan, M. R. (2018). Efficient removal of toxic phosphate anions from aqueous environment using pectin based quaternary amino anion exchanger. International Journal of Biological Macromolecules, 106, 1-10.
9. Manocha, S. M. (2003). Porous carbons. Sadhana, 28, 335-348.
10. Marsh, H.; Reinoso, F.R. (2006). Activated Carbon; Elsevier: Amsterdam, The Netherlands,; pp. 182–183.
11. Khalili Naji F. (2014). The application of activated carbon produced from used newspaper in the removal of methylene blue dye from aqueous solution: isotherm, kinetic and thermodynamic study. MCEJ; 14 (4) :1-9. (In Persian)
12. Hassanvand, M. S., Nabizadeh, R., & Heidari, M. (2008). Municipal solid waste analysis in Iran. Iranian Journal of Health and Environment, 1(1), 9-18.
13. Rodrigues Filho, G., Monteiro, D. S., da Silva Meireles, C., de Assunção, R. M. N., Cerqueira, D. A., Barud, H. S.,& Messadeq, Y. (2008). Synthesis and characterization of cellulose acetate produced from recycled newspaper. Carbohydrate Polymers, 73(1), 74-82.
14. Sekulic, J. (2004). Mesoporous and microporous titania membranes, PhD Thesis, University of Twente, (2004),103-120.
15. Haghighi, N., & Bayati, S. (2007). Extraction of titanium dioxide by sulfate method, from ilmenite concentrate with a purity of 29.40%. Applied Chemistry Today, 2(2), 60-70. (In Persian)
16. Riaz, U., Ashraf, S. M., & Kashyap, J. (2015). Role of conducting polymers in enhancing TiO2-based photocatalytic dye degradation: a short review. Polymer-Plastics Technology and Engineering, 54(17), 1850-1870.
17. Talebi S, Chaibakhsh Langroudi N, Moradi-Shoeili Z. (2017). Optimization of Photodegradation of Acid Blue 113 Dye on Anatase TiO2 Nanocatalyst Using Response Surface Methodology. jehe; 4 (2) :149-160. (In Persian)
18. Khoshmaneshzadeh, B., & Nokandeh, M. (1400). Removal of azo dyes from industrial wastewater by photocatalytic method. Paper presented at the 5th International Congress on Agricultural Development, Natural Resources, Environment and Tourism of Iran, Tabriz. (In Persian)
19. Huang, H., Leung, D. Y., Kwong, P. C., Xiong, J., & Zhang, L. (2013). Enhanced photocatalytic degradation of methylene blue under vacuum ultraviolet irradiation. Catalysis today, 201, 189-194.
20. Natarajan, T. S., Natarajan, K., Bajaj, H. C., & Tayade, R. J. (2013). Enhanced photocatalytic activity of bismuth-doped TiO2 nanotubes under direct sunlight irradiation for degradation of Rhodamine B dye. Journal of nanoparticle research, 15(5), 1669.
21. Rezazadeh M. Removal of methylene blue dye from aqueous media using activated carbon-coated iron magnetic nanoparticles and preconcentration and determination of picric acid by CTAB-modified magnetic nanoparticles. Master's Degree. Ministry of Science, Research and Technology, Shahid Chamran University of Ahvaz, Faculty of Science .2010 , (Persian)
22. Behboudi, A., Jafarzadeh, Y., & Yegani, R. (2017). Polyvinyl chloride/polycarbonate blend ultrafiltration membranes for water treatment. Journal of membrane science, 534, 18-24.
23. Lai, C. Y., Groth, A., Gray, S., & Duke, M. (2014). Preparation and characterization of poly (vinylidene fluoride)/nanoclay nanocomposite flat sheet membranes for abrasion resistance. Water research, 57, 56-66.
24. Zhang, Y., & Zhu, J. (2015). Composite photocatalytic membrane prepared by embedding porous SiO2 shell/void/TiO2 core particles into polycarbonate for photodegrading and removing pollutant from water. Chemical Engineering Science, 126, 390-398.
25. Yao, T. T., Wu, G. P., & Song, C. (2017). Interfacial adhesion properties of carbon fiber/polycarbonate composites by using a single-filament fragmentation test. Composites Science and Technology, 149, 108-115.
26. jafary, S. S., & Navaie Diva, T. (2021). Removal of Acid red 18 from Water using Polyaniline/Wheat bran Composite. Journal of Environmental Science and Technology (1), 207-217. (Persian)
27. Salimi, F., Pire, S. (2021). Methylene blue Adsorption from Aqueous Solution using magnetite-oak adsorbent. Journal of Environmental Science and Technology(1), 237-249. (In Persian)
28. Rasoulifard, M. H., Taheri Qazvini, N., Farhangnia, E., Heidari, A., & Doust Mohamadi, S. M. M. (2010). Removal of Direct Yellow 9 and Reactive Orange 122 from Contaminated Water Using Chitosan as a Polymeric Bioadsorbent by Adsorption Process. Journal of Color Science and Technology, 4(1), 17-23. (In Persian)
29. Haji Seyed Mohammad Shirazi, R., Miralinaghi, M. s., Moniri, E., & Rokni, S. E. (2021). Removal of Reactive Dye Using a Magnetic Polymer Nanocomposite from Aqueous Solution. Journal of Water and Wastewater; Ab va Fazilab (in persian), 31(7), 132-144. (Persian)
30. Aliabadi, R. S., & Mahmoodi, N. O. (2018). Synthesis and characterization of polypyrrole, polyaniline nanoparticles and their nanocomposite for removal of azo dyes; sunset yellow and Congo red. Journal of Cleaner Production, 179, 235-245.
31. Rani, M., & Shanker, U. (2018). Sun-light driven rapid photocatalytic degradation of methylene blue by poly (methyl methacrylate)/metal oxide nanocomposites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 559, 136-147.
32. Farrokhi, B, Ziaifar, N, & Hossein, S. (2019). Removal of Cationic Dye Malachite Green from Aqueous Solutions Using a Mixture of Carrageenan and Sodium Alginate Biopolymers in the Presence of Montmorillonite Nanoclay. Journal of Environmental Science and Technology (1), 63-76. (In Persian)
33. Zare, M., Adibian, E., Ghasemi, E., & Ashouri, F. (2023). Synthesis, Characterization, and Adsorptive Properties of Polyaniline@MFe2O4 (M: Mg, Mn, Ni) Magnetic Nanocomposites. Journal of Color Science and Technology, 17(2), 93-110. (In Persian)
34. Dil, E. A., Ghaedi, M., & Asfaram, A. (2017). The performance of nanorods material as adsorbent for removal of azo dyes and heavy metal ions: application of ultrasound wave, optimization and modeling. Ultrasonics-Sonochemistry, 34, 792-802.
35. Ghaedi, M., Heidarpour, S., Kokhdan, S. N., Sahraie, R., Daneshfar, A., & Brazesh, B. (2012). Comparison of silver and palladium nanoparticles loaded on activated carbon for efficient removal of Methylene blue: Kinetic and isotherm study of removal process. Powder Technology, 228, 18-25.
36. Huang, L., He, M., Chen, B., & Hu, B. (2018). Magnetic Zr-MOFs nanocomposites for rapid removal of heavy metal ions and dyes from water. Chemosphere, 199, 435-444.
37. Liu, Z., Chen, G., Hu, F., & Li, X. (2020). Synthesis of mesoporous magnetic MnFe2O4@ CS-SiO2 microsphere and its adsorption performance of Zn2+ and MB studies. Journal of environmental management, 263, 110377.
