بررسی تجربی و مدلسازی پارامترهای موثر بر حذف زیستی نیترات از آب با استفاده از روش سطح پاسخ
محورهای موضوعی : برگرفته از پایان نامه
1 - دانش آموخته دکترای مهندسی شیمی و كارشناس توسعه فناوري(آب و برق)، وزارت نيرو، تهران،ايران
2 - مهندسی شیمی ، واحد ماهشهر ، دانشگاه آزاد اسلامی ، ماهشهر ، ایران
کلید واژه: نیترات, جذب, ایزوترم, سینتیم جذب, روش سطح پاسخ,
چکیده مقاله :
مقدمه: آلودگی منابع آب آشامیدنی توسط نیترات یکی از مهمترین نگرانیها در مورد کیفیت آب است. مصرف آب آلوده با مقادیر بالای نیترات، عوارض جبران ناپذیری را ایجاد خواهد نمود.
روش: در این تحقیق، نانوجاذب آهن صفر ظرفیتی اصلاح شده با پوست گردو تهیه و به منظور استفاده در حذف زیستی یون نیترات مورد استفاده قرار گرفت. خصوصیات نانوجاذب زیستی توسط میکروسکوپ الکترونی روبشی بررسی شد و جذب نیترات پس از طراحی ساختارمند آزمایشات توسط روش سطح پاسخ با ارزیابی تاثیر پارامترهای pH و زمان و مقدار جاذب بر میزان حذف نیترات از آب مورد تجزیه و تحلیل قرار گرفته و مدل استخراج تعیین گردید. همچنین اعتبارسنجی مدل استخراج شده توسط آنالیز واریانس (ANOVA) مورد ارزیابی قرار گرفت. نهایتأ ایزوترم جذب تعادلی و سینتیک واکنش توسط ایزوترم های فرندلیچ و لانگمویر و سینتیک درجه اول و دوم بررسی شدند.
یافته ها و نتیجه گیری: نتایج مبین تاثیر 3 متغییر pH و زمان و مقدار جاذب بر فرایند حذف نیترات بوده که مقدار بهینه برای بیشینه ظرفیت حذف نیترات در pH = 3/5 و زمان=29/50 دقیقه و مقدار جاذب=053/0 گرم بدست آمد. با توجه به مقادیر ضریب همبستگی به دست آمده از نمودارهای ایزوترم، مقدار ضریب همبستگی ایزوترم لانگمویر از ایزوترم فرندلیچ بیشتر بوده است و در جذب نیترات بهتر عمل کرده است. از بررسی سینتیک فرایند جذب مشخص شد که جذب به صورت شیمیایی انجام شده است و سینتیک شبه مرتبهی دوم پیروی میکند.
Introduction: Nitrate contamination of water sources poses a significant threat. This study investigates the efficacy of a novel bio-adsorbent, walnut shell-modified zero-valent iron nanoparticle (nZVI), for nitrate removal. Response Surface Methodology (RSM) was employed to optimize the process.
Methods: Walnut shell-modified nZVI was synthesized and characterized using SEM. Batch adsorption experiments were conducted to assess the impact of pH, contact time, and adsorbent dosage on nitrate removal efficiency. RSM, using a central composite design, was applied to model and optimize the process. Adsorption isotherms (Langmuir and Freundlich) and kinetic models (pseudo-first-order and pseudo-second-order) were employed to analyze the adsorption mechanism.
Findings: RSM analysis revealed the significant influence of all three parameters on nitrate removal. Optimal conditions for maximum nitrate removal were determined as pH 3.5, contact time 29.5 minutes, and adsorbent dosage 0.053 g. The Langmuir isotherm model provided a better fit than the Freundlich model, suggesting monolayer adsorption. The pseudo-second-order kinetic model best described the adsorption process, indicating chemisorption. Walnut shell-modified nZVI demonstrates significant potential for nitrate removal from water. RSM effectively optimized the adsorption process, revealing optimal conditions and providing insights into the adsorption mechanism. The Langmuir isotherm and pseudo-second-order kinetic models accurately represent the adsorption behavior. This bio-based adsorbent presents a promising, cost-effective, and environmentally friendly alternative for water purification.
[1] Z. Zhang, Y. Zhang, and Y. Chen, “Recent advances in partial denitrification in biological nitrogen removal: From enrichment to application,” Bioresour Technol, vol. 298, p. 122444, Feb. 2020, doi: 10.1016/J.BIORTECH.2019.122444.
[2] J. M. Rodríguez-Maroto, F. García-Herruzo, A. García-Rubio, C. Gómez-Lahoz, and C. Vereda-Alonso, “Kinetics of the chemical reduction of nitrate by zero-valent iron,” Chemosphere, vol. 74, no. 6, pp. 804–809, Feb. 2009, doi: 10.1016/J.CHEMOSPHERE.2008.10.020.
[3] S. Chatterjee, D. S. Lee, M. W. Lee, and S. H. Woo, “Nitrate removal from aqueous solutions by cross-linked chitosan beads conditioned with sodium bisulfate,” J Hazard Mater, vol. 166, no. 1, pp. 508–513, Jul. 2009, doi: 10.1016/j.jhazmat.2008.11.045.
[4] M. Chabani, A. Amrane, and A. Bensmaili, “Equilibrium sorption isotherms for nitrate on resin Amberlite IRA 400,” J Hazard Mater, vol. 165, no. 1–3, pp. 27–33, Jun. 2009, doi: 10.1016/j.jhazmat.2008.08.091.
[5] G. Jahed Khaniki, M. Mahdavi, A. Ghasri, and S. Saeednia, “Investigation of Nitrate Concentrations in Some Bottled Water Available in Tehran,” Iranian Journal of Health and Environment, vol. 1, no. 1, pp. 45–50, Oct. 2008, Accessed: Nov. 08, 2025. [Online]. Available:
[6] D. W. Cho, C. M. Chon, B. H. Jeon, Y. Kim, M. A. Khan, and H. Song, “The role of clay minerals in the reduction of nitrate in groundwater by zero-valent iron,” Chemosphere, vol. 81, no. 5, pp. 611–616, 2010, doi: 10.1016/j.chemosphere.2010.08.005.
[7] S. Dey, N. Haripavan, S. R. Basha, and G. V. Babu, “Removal of ammonia and nitrates from contaminated water by using solid waste bio-adsorbents,” Current Research in Chemical Biology, vol. 1, p. 100005, Jan. 2021, doi: 10.1016/J.CRCHBI.2021.100005.
[8] S. A. Khalaf, A. J. Jaeel, and A. H. Ibrahim, “A review of nitrate removal from drinking water,” AIP Conf Proc, vol. 2787, no. 1, Jul. 2023, doi: 10.1063/5.0148475/2902513.
[9] A. R. Rahmani, M. Solaimany Aminabad, G. Asgari, and F. Barjasteh Askari, “Removal of Nitrate by MgCl2-Modified Pumice and Zero -Valent Magnesium from Aqueous Solutions,” Iranian Journal of Health and Environment, vol. 3, no. 4, pp. 461–474, 2011, Accessed: Nov. 08, 2025. [Online].
[10] Y. Pang and J. Wang, “Various electron donors for biological nitrate removal: A review,” Science of The Total Environment, vol. 794, p. 148699, Nov. 2021, doi: 10.1016/J.SCITOTENV.2021.148699.
[11] B. Muñoz-Palazon et al., “Simultaneous removal of nitrate and pesticides from contaminated groundwater using aerobic granular biomass technology,” J Environ Chem Eng, vol. 11, no. 2, p. 109527, Apr. 2023, doi: 10.1016/J.JECE.2023.109527.
[12] S. Rahimi, O. Modin, and I. Mijakovic, “Technologies for biological removal and recovery of nitrogen from wastewater,” Biotechnol Adv, vol. 43, p. 107570, Nov. 2020, doi: 10.1016/J.BIOTECHADV.2020.107570.
[13] E. Abascal, L. Gómez-Coma, I. Ortiz, and A. Ortiz, “Global diagnosis of nitrate pollution in groundwater and review of removal technologies,” Science of The Total Environment, vol. 810, p. 152233, Mar. 2022, doi: 10.1016/J.SCITOTENV.2021.152233.
[14] F. Rezvani, M. H. Sarrafzadeh, S. Ebrahimi, and H. M. Oh, “Nitrate removal from drinking water with a focus on biological methods: a review,” Environ Sci Pollut Res Int, vol. 26, no. 2, pp. 1124–1141, Jan. 2019, doi: 10.1007/S11356-017-9185-0.
[15] M. Keshvardoostchokami, M. Majidi, A. Zamani, and B. Liu, “A review on the use of chitosan and chitosan derivatives as the bio-adsorbents for the water treatment: Removal of nitrogen-containing pollutants,” Carbohydr Polym, vol. 273, p. 118625, Dec. 2021, doi: 10.1016/J.CARBPOL.2021.118625.
[16] M. Zhang et al., “Evaluating biochar and its modifications for the removal of ammonium, nitrate, and phosphate in water,” Water Res, vol. 186, p. 116303, Nov. 2020, doi: 10.1016/J.WATRES.2020.116303.
[17] R. S. Dongre, “Phosphate & Nitrate Removal from Agricultural Runoff by Chitosan-Graphite Composite,” Research & Development in Material Science, vol. 6, no. 3, May 2018, doi: 10.31031/RDMS.2018.06.000637.
[18] M. Ghaneian, M. Ehrampoush, M. Safdari, M. Emamjomeh, and M. Askarishahi, “Performance of Olive pit Ash’s In Nitrate Removal from the Aqueous Solutions,” Tolooebehdasht, vol. 13, no. 2, pp. 168–177, 2014, Accessed: Nov. 08, 2025. [Online].
[19] H. Demiral and G. Gündüzoǧlu, “Removal of nitrate from aqueous solutions by activated carbon prepared from sugar beet bagasse,” Bioresour Technol, vol. 101, no. 6, pp. 1675–1680, 2010, doi: 10.1016/j.biortech.2009.09.087.
[20] T. Ueda, Y. Shinogi, and M. Yamaoka, “Biological nitrate removal using sugar-industry wastes,” Paddy and Water Environment, vol. 4, no. 3, pp. 139–144, Sep. 2006, doi: 10.1007/S10333-006-0040-Z.
[21] K. Amirsadat, H. Sharififard, and A. Lashnizadegan, “Nitrate removal from municipal effluent in the adsorption process on activated carbon of orange peel modified with chitosan and iron particles,” Amirkabir Journal of Civil Engineering, vol. 54, no. 7, pp. 2493–2508, Sep. 2022, doi: 10.22060/CEEJ.2021.19667.7228.
[22] L. Zhang et al., “Preparation and mechanism of modified quaternary amine straw for efficient nitrate removal from aqueous solution,” Biomass Convers Biorefin, vol. 14, no. 9, pp. 10275–10288, May 2024, doi: 10.1007/S13399-022-03062-3.
[23] A. Modi and R. Kasher, “Nitrate removal from contaminated groundwater by micellar-enhanced ultrafiltration using a polyacrylonitrile membrane with a hydrogel-stabilized ZIF-L layer,” Water Res, vol. 254, p. 121384, May 2024, doi: 10.1016/J.WATRES.2024.121384.
