مدیریت انرژی خانگی با روش بهینهسازی کوهنوردی و سیستم انرژی خورشیدی- باتری
محورهای موضوعی : مهندسی برق قدرتمحمد حسین عرفانی مجد 1 , غلامرضا کامیاب 2 , سعید بلوچیان 3
1 - گروه مهندسی برق، واحد گناباد، دانشگاه آزاد اسلامی، گناباد، ایران
2 - گروه مهندسی برق، واحد گناباد، دانشگاه آزاد اسلامی، گناباد، ایران
3 - گروه مهندسي برق، واحد مشهد، دانشگاه آزاد اسلامی، مشهد، ايران
کلید واژه: بهینهسازی کوهنوردی, ذخیرهسازی خورشیدی, پاسخگویی به تقاضا, برنامهریزی انرژی خانگی,
چکیده مقاله :
این مقاله به برنامهریزی بهینه مدیریت تقاضای انرژی در منازل مسکونی پرداخته و رویکردی نوآورانه برای کاهش هزینههای برق با ادغام سیستمهای ذخیرهسازی خورشیدی و استراتژیهای پاسخ به تقاضا ارائه میدهد. الگوریتم بهینهسازی کوهنوردی (HOA) برای زمانبندی بهینه وسایل خانگی قابل تأخیر تحت مکانیزمهای تشویقی مانند تعرفههای زمانبندیشده و قیمتگذاری لحظهای به کار گرفته شده است. روش پیشنهادی با انجام مطالعات موردی در یک محیط هوشمند تولید و مصرف، ارزیابی و تأیید شده است. این روش توانسته است کاهش ۲۶ درصدی هزینههای برق در تعرفههای زمانبندیشده و کاهش ۳۲ درصدی در تعرفههای قیمتگذاری لحظهای در مقایسه با سناریوهای پایهای حاصل کند. علاوه بر این، نتایج نشاندهنده افزایش انعطافپذیری و کارایی انرژی از طریق استفاده از منابع انرژی تجدیدپذیر و سیستمهای ذخیرهسازی باتری است. این روش نه تنها از نظر اقتصادی مؤثر است بلکه به پایداری شبکه و بهرهبرداری از انرژیهای تجدیدپذیر کمک میکند و به عنوان یک راهکار عملی برای کاربردهای گسترده پیشنهاد میشود.
This paper focuses on the optimal planning of energy demand management in residential homes and presents an innovative approach to reducing electricity costs by integrating solar storage systems and demand response strategies. The Hiking Optimization Algorithm (HOA) is employed for the optimal scheduling of deferrable household appliances under incentive mechanisms such as time-of-use tariffs and real-time pricing. The proposed method has been evaluated and validated through case studies in a smart production and consumption environment. The results demonstrate a 26% reduction in electricity costs under time-of-use tariffs and a 32% reduction under real-time pricing compared to baseline scenarios. Additionally, the findings indicate improved flexibility and energy efficiency through the utilization of renewable energy sources and battery storage systems. This approach is not only economically effective but also contributes to grid stability and the integration of renewable energy, making it a practical solution for widespread applications.
[1] M. Tostado-Véliz, D. Icaza-Alvarez, and F. Jurado, “A novel methodology for optimal sizing photovoltaic-battery systems in smart homes considering grid outages and demand response,” Renewable Energy, vol. 170, pp. 884–896, 2021, doi: 10.1016/j.renene.2020.09.073.
[2] M. Tostado-Véliz, M. Bayat, A. A. Ghadimi, and F. Jurado, “Home energy management in off-grid dwellings: Exploiting flexibility of thermostatically controlled appliances,” Journal of Cleaner Production, vol. 310, art. no. 127507, 2021, doi: 10.1016/j.jclepro.2021.127507.
[3] M. J. M. Al Essa, “Home energy management of thermostatically controlled loads and photovoltaic-battery systems,” Energy, vol. 176, pp. 742–752, 2019, doi: 10.1016/j.energy.2018.12.045.
[4] G. Wang et al., “Robust energy management through aggregation of flexible resources in multi-home micro energy hub,” Applied Energy, vol. 357, art. no. 122471, 2024, doi: 10.1016/j.apenergy.2024.122471.
[5] A. Ajitha, G. Akhilesh, T. Rajkumar, S. Radhika, and S. Goel, “Design and implementation of smart home energy management system for Indian residential sector,” Energy Conversion and Management, vol. 307, art. no. 118369, 2024, doi: 10.1016/j.enconman.2024.118369.
[6] F. Ghanavati, J. C. O. Matias, and G. J. Osório, “Towards sustainable smart cities: Integration of home energy management system for efficient energy utilization,” Sustainable Cities and Society, vol. 111, art. no. 105579, 2024, doi: 10.1016/j.scs.2024.105579.
[7] W. Pinthurat, T. Surinkaew, and B. Hredzak, “An overview of reinforcement learning-based approaches for smart home energy management systems with energy storages,” Renewable and Sustainable Energy Reviews, vol. 202, art. no. 114648, 2024, doi: 10.1016/j.rser.2024.114648.
[8] R. Xu et al., “A decentralized federated learning based interoperable and heterogeneity aware predictive optimization method for energy and comfort in smart homes environment,” Applied Soft Computing, vol. 161, art. no. 111689, 2024, doi: 10.1016/j.asoc.2024.111689.
[9] M. S. Aliero, K. N. Qureshi, M. F. Pasha, and G. Jeon, “Smart home energy management systems in Internet of Things networks for green cities demands and services,” Environmental Technology & Innovation, vol. 22, art. no. 101443, 2021, doi: 10.1016/j.eti.2021.101443.
[10] M. M. Vahedipour-Dahraie, H. Rashidizadeh-Kermani, and A. Anvari-Moghaddam, “Risk-based stochastic scheduling of resilient microgrids considering demand response programs,” IEEE Systems Journal, vol. 15, no. 1, pp. 971–980, Mar. 2021, doi: 10.1109/JSYST.2020.3026142.
[11] T. Khalili, A. Jafari, M. Abapour, and B. Mohammadi-Ivatloo, “Optimal battery technology selection and incentive-based demand response program utilization for reliability improvement of an insular microgrid,” Energy, vol. 169, pp. 92–104, 2019, doi: 10.1016/j.energy.2018.12.024.
[12] F. Shariatzadeh, P. Mandal, and A. K. Srivastava, “Demand response for sustainable energy systems: A review, application and implementation strategy,” Renewable and Sustainable Energy Reviews, vol. 45, pp. 343–350, 2015, doi: 10.1016/j.rser.2015.01.062.
[13] J. Dong, F. Gao, X. Guan, Q. Zhai, and J. Wu, “Storage-reserve sizing with qualified reliability for connected high renewable penetration micro-grid,” IEEE Transactions on Sustainable Energy, vol. 7, no. 2, pp. 732–743, 2016, doi: 10.1109/TSTE.2015.2498599.
[14] D. P. Birnie III, “Optimal battery sizing for storm-resilient photovoltaic power island systems,” Solar Energy, vol. 109, pp. 165–173, 2014, doi: 10.1016/j.solener.2014.08.016.
[15] M. Tavakoli, F. Shokridehaki, M. F. Akorede, M. Marzband, I. Vechiu, and E. Pouresmaeil, “CVaR-based energy management scheme for optimal resilience and operational cost in commercial building microgrids,” Int. J. Electr. Power Energy Syst., vol. 100, pp. 1–9, 2018, doi: 10.1016/j.ijepes.2018.02.022.
[16] S. Tsianikas, J. Zhou, D. P. Birnie III, and D. W. Coit, “Economic trends and comparisons for optimizing grid-outage resilient photovoltaic and battery systems,” Applied Energy, vol. 256, art. no. 113892, 2019, doi: 10.1016/j.apenergy.2019.113892.
[17] F. Benavente, A. Lundblad, P. E. Campana, Y. Zhang, S. Cabrera, and G. Lindbergh, “Photovoltaic/battery system sizing for rural electrification in Bolivia: Considering the suppressed demand effect,” Applied Energy, vol. 235, pp. 519–528, 2019, doi: 10.1016/j.apenergy.2018.10.084.
[18] E. Quiles, C. Roldán-Blay, G. Escrivá-Escrivá, and C. Roldán-Porta, “Accurate sizing of residential stand-alone photovoltaic systems considering system reliability,” Sustainability, vol. 12, no. 3, p. 1274, 2020, doi: 10.3390/su12031274.
[19] A. Lagrange, M. de Simón-Martín, A. González-Martínez, S. Bracco, and E. Rosales-Asensio, “Sustainable microgrids with energy storage as a means to increase power resilience in critical facilities: An application to a hospital,” Int. J. Electr. Power Energy Syst., vol. 119, art. no. 105865, 2020, doi: 10.1016/j.ijepes.2020.105865.
[20] NREL, “Renewable, Energy Integration & Optimization,” National Renewable Energy Laboratory, Denver, 2018. [Online]. Available: https://reopt.nrel.gov/tool. [Accessed: Jan. 8, 2021].
[21] S. Xian and X. Feng, “Meerkat optimization algorithm: A new meta-heuristic optimization algorithm for solving constrained engineering problems,” Expert Systems with Applications, vol. 231, art. no. 120482, 2023, doi: 10.1016/j.eswa.2023.120482.
[22] Smart Home Dataset with Weather Information, 2018. [Online]. Available: https://www.kaggle.com/taranvee/smart-home-dataset-with-weather-information. [Accessed: Sep. 19, 2020].
[23] S. O. Oladejo, S. O. Ekwe, and S. Mirjalili, “The Hiking Optimization Algorithm: A novel human-based metaheuristic approach,” Knowledge-Based Systems, vol. 296, art. no. 111880, 2024, doi: 10.1016/j.knosys.2024.111880.
