پتانسیل سنجی مناطق شهر تهران جهت احداث بیمارستان های اضطراری با استفاده از روش های تصمیم گیری چندمعیاره (MCDM)
محورهای موضوعی : زیرساخت اطلاعات مکانی و طبقه بندی
1 - استادیار گروه جغرافیای طبیعی دانشکده علوم اجتماعی دانشگاه محقق اردبیلی
2 - گروه آموزشی سنجش از دور و GIS، دانشکده برنامه ریزی و علوم محیطی، دانشگاه تبریز، تبریز، ایران
کلید واژه: بیمارستان های اضطراری, کوید 19, سنتینل 5, AHP و WLC.,
چکیده مقاله :
ویروس کرونا نشان داد که امکانات و زیرساخت بهداشتی و درمانی در کل دنیا به شدت محدود است. پس از شیوع ویروس کوید 19 برای اولین بار در سال 2019 در کشور چین، بهدلیل قدرت انتقال بالای این ویروس پیشبینی میشد که به زودی در کل جهان و ایران پخش شود. مدت کوتاهی پس از اولین مشاهده ویروس در ایران، به سرعت کل مناطق کشور درگیر و شمار مراجعات به مراکز درمانی به شدت بالا رفت. به گونهای که ظرفیت اکثر بیمارستانهای اختصاص داده شده برای بیماران کرونایی در شهرهای پرجمعیت به خصوص تهران تکمیل شد و چندین بیمارستان اضطراری نیز در مناطق مختلف این شهرها احداث گردید. هدف از این پژوهش استفاده از معیارهای مختلف جهت تعیین بهترین مکانها برای احداث بیمارستانهای اضطراری در سطح شهر تهران است. برای این منظور ابتدا 9 معیار موثر بر انتخاب مکان بهینه تعیین شده است. معیارها شامل فاصله از معابر شهری، فاصله از گسلها، فاصله از بیمارستانهای ویژه کرونا، تراکم جمعیت، معیار کاربری اراضی و چهار معیار مربوط به شاخصهای آلودگی هوا (CO، NO2، SO2 و O3) است که با استفاده از تصاویر ماهواره سنتینل 5 در محیط سامانه گوگل ارث انجین (GEE) استخراج گردید. معیارها با استفاده از روشهای تصمیمگیری چند معیاره (MCDM) مانند فرآیند تحلیل سلسله مراتبی (AHP) و بر اساس نظریات کارشناسان وزندهی و در نهایت با روش ترکیب خطی وزندار (WLC) مکانیابی انجام شد. بر اساس خروجیها بخشهایی از منطقه 14 بهعنوان مناسبترین مکان شناسایی شد.
Corona virus showed that health facilities and infrastructure are severely limited in the whole world. After the outbreak of the Covid-19 virus for the first time in 2019 in China, due to the high transmission power of this virus, it was predicted that it would soon spread throughout the world and Iran. A short time after the first observation of the virus in Iran, all regions of the country were quickly affected and the number of referrals to medical centers increased sharply. In such a way that the capacity of most of the hospitals allocated for corona patients in densely populated cities, especially Tehran, was completed and several emergency hospitals were also built in different areas of these cities. The purpose of this research is to use different criteria to determine the best places to build emergency hospitals in Tehran. For this purpose, 9 effective criteria for choosing the optimal location have been determined. The criteria include distance from urban roads, distance from faults, distance from special corona hospitals, population density, land use criteria and four criteria related to air pollution indicators (CO, NO2, SO2 and O3) which are used It was extracted from the images of the Sentinel 5 satellite in the environment of the GEE system. The criteria were determined by using MCDM methods such as AHP and weighting based on the opinions of experts and finally by WLC method. Based on the results, parts of the 14th region were identified as the most suitable places.
1. Ataei M. (2011). Multi-Criteria Decision Making, First Edition, Shahrood: Shahrood University of Technology Publications. (In Persian).
2. Aydin N, Seker S. (2021). Determining the location of isolation hospitals for COVID-19 via Delphi-based MCDM method. Int J Intell Syst 36:3011–3034. doi: 10.1002/int.22410.
3. Bahari R, Abbaspour A, Pahlavani P. (2016). Zoning of suspended particulate pollution using local statistical models in GIS (case study, Tehran). Journal of Geomatics Science and Technology. 5:3. (In Persian).
4. Berman JD, Ebisu K. (2020). Changes in US air pollution during the COVID-19 pandemic. Science of the Total Environment, 739, 139864.
5. Boyacı AÇ, Şişman A. (2021). Pandemic hospital site selection: a GIS-based MCDM approach employing Pythagorean fuzzy sets. Environmental Science and Pollution Research, 29:1985–1997. doi.org/10.1007/s11356-021-15703-7.
6. Emtehani M, Abodolazimi H, Shahinifar H. (2022). Hospital Site Selection for the Health Management of the Citizens; A Case Study: Zone 10, Shiraz Municipal, Iran. Journal of Health Information Management, 17:2. (In Persian).
7. Gul M, Guneri AF. (2021). Hospital location selection: A systematic literature review on methodologies and applications, Math. Probl. Eng.14:2 doi: 10.1155/2021/6682958.
8. Hashemkhani Zolfani S, Yazdani M, Ebadi Torkayesh A, Derakhti A. (2020). Application of a gray-based decision support framework for location selection of a temporary hospital during COVID-19 pandemic. Symmetry 12:886. doi.org/10.3390/sym12060886.
9. Jafari F, Jamali AA, Almodarresi A. (2017). Optimum spatial management using membership functions and fuzzy overlap and AHP model in GIS environment to select suitable areas for the construction of new health-treatment centers and hospitals in Bandar Abbas city. Urban management studies, 27:8. (In Persian).
10. Lin Y-Ch, Chen T Ch. (2022). An intelligent system for assisting personalized COVID-19 vaccination location selection: Taiwan as an example, Digital Health, Volume 8: 1–16. doi: 10.1177/20552076221109062.
11. Malczewski J, Rinner C. (2015). Multicriteria decision analysis in geographic information science. Springer. doi.org/10.1007/978-3-540-74757-4.
12. Malczewski J. (1999). GIS and multi criteria Decision Analysis, John Wiley and sons Inc.Newyork, USA.
13. Rassouli M, Ashrafizadeh H, Shirinabadi Farahani A, Akbari ME. (2020). COVID-19 Management in Iran as One of the Most Affected Countries in the World: Advantages and Weaknesses. Front. Public Health 8:510. doi: 10.3389/fpubh.2020.00510.
14. Razavi-Termeh S V, Sadeghi-Niaraki A, Choi S M. (2021). Coronavirus disease vulnerability map using a geographic information system (GIS) from 16 April to 16 May 2020. Physics and Chemistry of the Earth, Parts A/B/C, 103043. doi: 10.1016/j.pce.2021.103043.
15. Şahin S, Ocak M. (2019). Analytic hierarchy process for hospital site selection Health Policy Technol., 8 (1) (2019), pp. 42-50. doi.org/10.1016/j.hlpt.2019.02.005.
16. Saroja R, Madavan S, Haseena. (2022). Human centered decision-making for COVID 19 testing center location selection: Tamil Nadu—a case study, Computational and Mathematical Methods in Medicine, vol. 2022, Article ID 2048294, 13 pages, doi: 10.1155/2022/2048294.
17. Shikwambana LP, Mhangara N, Mbatha. (2020). Trend analysis and first time observations of sulphur dioxide and nitrogen dioxide in South Africa using TROPOMI/Sentinel-5 P data.Int. J. Appl. Earth Obs. Geoinf., 91, Article 102130. doi.org/10.1016/j.jag.2020.102130.
18. Soltani A, Inaloo R B, Rezaei M, Shaer F, Riyabi MA. (2019). Spatial analysis and urban land use planning emphasising hospital site selection: a case study of Isfahan city. Bull Geogr Socio-Econ Ser 43: 71–89. doi: 10.2478/bog-2019-0005.
19. Soltani A, Marandi E Z. (2011). Hospital site selection using two-stage fuzzy multi-cri- teria decision making process. J Urban Environm Eng;5(1):32–43.
20. Taş MA. (2021). Assessment of Site Selection Criteria for Medical Waste during COVID-19 Pandemic, European Journal of Science and Technology. No. 28, pp. 63-69. doi.org/10.31590/ejosat.984857.
21. Tripathi A K, Agrawal S, Gupta RD. (2021). Comparison of GIS-based AHP and fuzzy AHP methods for hospital site selection: a case study for Prayagraj City, India. GeoJournal, doi.org/10.1007/s10708-021-10445-y.
22. Wang CN, Chou Ch, PinHsu H, Nguyen V. (2021). Optimization Model for Selecting Temporary Hospital Locations During COVID-19 Pandemic, Computers, Materials and Continua 70(1):397-412. doi: 10.32604/cmc.2022.019470.
23. World Health Organization (WHO). (2021). Global research on coronavirus disease (COVID-19), https://www.who.int.
24. Wu Z. McGoogan,J. (2020). Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China. JAMA, 323, 1239–1242. doi: 10.1001/jama.2020.2648.
25. Yağma N M, Donkor A G, Gökler M E. (2020). Management of hospitals during COVID-19 pandemic. Med Res Rep 3:155–161. doi: 10.32598/hdq.7.2.377.3.
26. Zangiabadi A, Alizadeh J, Ahmadian M. (2012). An analysis of the degree of development of the cities of East Azarbaijan province (using TOPSIS and AHP techniques), Journal of new attitudes in human geography, 4:1. (In Persian).
