ارزیابی اثر آللوپاتی عصاره دانه و برگ اکالیپتوس (Eucalyptus globulus Labill.) بر جوانه زنی و رشد گندم (Triticum aestivum L.) و علف هرز کیسه کشیش (Capsella bursa-pastoris)
محورهای موضوعی : زیست شناسی
1 - استادیار گروه زراعت، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران.
کلید واژه: آللوپاتی, اکالیپتوس, ارتفاع بوته, جوانهزنی, محتوای کلروفیل, وزن خشک,
چکیده مقاله :
هدف: علف های هرز جزء جداییناپذیر اکوسیستم های زراعی و غیرزراعی است که کمیت و کیفیت محصولات کشاورزی را تهدید می کند. بنابراین، برای دستیابی به یک سطح اقتصادی با حداقل استفاده از سموم شیمیایی بایستی کنترل مناسب علفهای هرز براساس برنامه مدیریت تلفیقی و باهدف ترکیب روشهای مختلف سازگار با محیطزیست باشد.
مواد و روش ها: آزمایش گلخانه ای در قالب بلوک های کامل تصادفی و آزمایشگاهی به صورت طرح کاملاً تصادفی در سال 1402 انجام شد. تیمارها شامل عصاره دانه و برگ اکالیپتوس درغلظتهای٢٠، ۴٠، ۶٠، ٨٠ و١٠٠ درصد به همراه شاهد (آب مقطر) بود.
یافته ها: غلظت عصاره دانه و برگ اکالیپتوس، تمام صفات مورد مطالعه را به طور معنیداری کاهش داد. با افزایش غلظت عصاره، میزان بازدارندگی روند افزایشی داشت. علف هرز کیسه کشیش بیشتر از گندم تحت تأثیر مواد دگرآسیب قرار گرفت و کاهش بیشتری داشت. غلظت۸۰ و۱۰۰ درصد عصاره دانه درصد جوانهزنی، سرعت جوانهزنی، طول اندامهای هوایی، طول ریشه چه، وزن خشک اندامهای هوایی و وزن خشک ریشهچه علف هرز کیسه کشیش را به طور کامل متوقف کرد. چنین شرایطی نیز در غلظت۱۰۰ درصد عصاره برگ ایجاد شد. کمترین محتوای کلروفیل کل در علفهرز کیسه کشیش تحت تأثیر غلظت۱۰۰ درصد عصاره دانه و برگ مشاهده شد. این کاهش در غلظت۸۰ درصد عصاره دانه 3/86 درصد برآورد گردید.
نتیجه گیری: گیاه دولپه ای کیسه کشیش نسبت به گیاه تکلپهای گندم به اثرات دگرآسیبی اکالیپتوس حساس تر است. بنابراین، عصاره آبی اکالیپتوس به ویژه دانه، حاوی ترکیبات دگرآسیبی فراوانی است که می توان آن را به عنوان یک علفکش زیستی و همراه با طبیعت معرفی کرد و در آینده در برنامه های مدیریتی تلفیقی علف های هرز به خصوص علف هرز کیسه کشیش قرارداد.
Objective: Weeds are an integral part of agricultural and non-agricultural ecosystems that threaten the quantity and quality of agricultural products.Therefore, to achieve an economic level with minimal use of chemical pesticides, appropriate control of weeds should be based on an integrated management plan with the aim of combining different environmental compatible methods.
Methods: A greenhouse experiment in the form of randomized complete blocks and a laboratory was conducted in the form of a completely randomized design in 2023.The treatments included seed and leaf eucalyptus extract in concentrations of 20, 40, 60, 80 and 100% along with control (distilled water).
Results: The concentration of eucalyptus seed and leaf extract reduced all studied traits significantly.Capsella bursa-pastoris weed was more affected by allelopathic substances than wheat and had a greater reduction.The concentration of 80% and 100% seed extract stopped the germination percentage, germination rate, length of aerial parts, length of roots, dry weight of aerial parts and dry weight of roots of the weed completely.Such conditions were also created in 100% concentration of leaf extract.The lowest total chlorophyll content was observed in Capsella bursa-pastoris weed under the influence of 100% concentration of seed and leaf extract.
Conclusion: Dicotyledonous plant is more sensitive than monocotyledonous plant of wheat to the harmful effects of Eucalyptus. Eucalyptus aqueous extract, especially the seed, contains many harmful compounds that can be introduced as a biological herbicide and in harmony with nature, and in the future weed management programs, especially the Capsella bursa-pastoris weed.
1. Rassaeifar M, Hosseini N, Haji Hasani Asl N, Zandi P & Moradi Aghdam A. Allelopathic effect of Eucalyptus globulus essential oil on seed germination and seedling establishment of Amaranthus blitoides and Cynodon dactylon. Trakia Journal of Sciences. 2013; 1: 73-81
. 2. Sardrood BP & Goltapeh EM. Weeds, herbicides and plant disease management. In: Sustainable Agriculture Reviews. 2018; 31: 41-178. DOI:10.1007/978-3-319-94232-2-3
3. Fried G, Chauvel B, Reynaud P & Sache I. Decreases in crop production by non-native weeds, pests, and pathogens. In: Impact of biological invasions on ecosystem services. 2017; 83-101. DOI:10.1007/978-3-319-45121-3-6
4. Zand A, Rahimian mashhadi H, Koochaki A, Khalghani J, Moosavi K. & Ramezani K. Ecology of Weeds (Management Applications) (Translation). Jahad Daneshgahi Press, Mashhad. 2004; 560p
. 5. Balbus JM, Boxall AB, Fenske RA, McKone TE & Zeise L. Implications of global climate change for the assessment and management of human health risks of chemicals in the natural environment. Environ Toxicol Chem. 2013; 32(1): 62-78. DOI:10.1002/etc.2046
6. Weldeslassie T, Naz H, Singh B & Oves M. Chemical contaminants for soil, air and aquatic ecosystem. In: Modern age environmental problems and their remediation. 2018; 1-22. DOI:10.1007/978-3-319-64501-8-1
7. Jabran K & Chauhan BS. Weed management in aerobic rice systems. Crop Protection. 2015; 78: 151-163. DOI:10.1016/j.cropro.2015.09.005
8. Buchi L, Wendling M, Amosse C, Jeangros B & Charles R. Cover crops to secure weed control strategies in a maize crop with reduced tillage. Field Crops Research. 2020; 247: 107583. DOI:10.1016/j.fcr.2019.107583
9. Motmainna M, Juraimi AS, Uddin MK, Asib NB, Islam AKMM, Ahmad-Hamdani MS, Berahim Z & Hasan M. Physiological and biochemical responses of Ageratum conyzoides, Oryza sativa f. spontanea (weedy rice) and Cyperus iria to Parthenium hysterophorus methanol extract. Plants. 2021; 10: 1205. DOI:10.3390/plants1006120
10. Medic A, Zamljen T, Slatnar A, Hudina M, Grohar MC & Veberic, R. Effect of Juglone and Other Allelochemicals in Walnut Leaves on Yield, Quality and Metabolites of Snack Cucumber (Cucumis sativus L.). Foods. 2023; 12: 371. DOI:10.3390/foods12020371
11. Lamine C. Transition pathways towards a robust ecologization of agriculture and the need for system redesign. Cases from organic farming and IPM. Journal of Rural Studies. 2011; 27(2): 209-219. DOI:10.1016/j.jrurstud.2011.02.001
12. Geng Y, Cao G, Wang L & Wang S. Effects of equal chemical fertilizer substitutions with organic manure on yield, dry matter, and nitrogen uptake of spring maize and soil nitrogen distribution. PLoS ONE. 2019; 14(7): e0219512. DOI:10.1371/journal.pone.0219512
13. Korres NE, Burgos NR, Travlos I, Vurro M, Gitsopoulos TK & Varanasi VK. New directions for integrated weed management: Modern technologies, tools and knowledge discovery. Advances in Agronomy. 2019; 155: 243-319. DOI:10.1016/bs.agron.2019.01.006
. 14. Mubeen K, Nadeem MA, Tanveer A & Zahir ZA. Allelopathic effects of sorghum and sunflower water extractson germination and seedling growth of rice (Oryza sativa L.) and three weed species. Journal of Animal and Plant Sciences. 2012; 22(3): 738-746
. 15. Cheng F & Cheng Z. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front Plant Sciences. 2015; 6: 1020. DOI:10.3389/fpls.2015.01020
16. Macias FA, Oliveros-Bastidas A, Marin D, Chinchilla N, Castellano D & Molinillo JM. Evidence for an allelopathic interaction between rye and wild oats. Journal of Agricultural and Food Chemistry. 2014; 62(39): 9450-9457. DOI:10.1021/jf503840d
17. Jabran K. Manipulation of allelopathic crops for weed control. Springer, Cham, 2017; pp 65-75. DOI:10.1007/978-3-19-53186-1
18. Aci MM, Sidari R, Araniti F & Lupini A. Emerging trends in allelopathy: A genetic perspective for sustainable agriculture. Agronomy. 2022; 12(9): 2043. DOI:10.3390/agronomy12092043
19. Das CR, Mondal NK, Aditya P, Datta K, Banerjee A & Das K. Allelopathic potentialities of leachates of leaf litter of some selected tree species on gram seeds under laboratory conditions. Asian Journal of Experimental Biological Science. 2012; 3(1): 59-65
. 20. Harun MAYA, Robinson RW, Johnson J & Uddin MN. Allelopathic potential of Chrysanthemoides monilifera subsp. monilifera (boneseed): A novel weapon in the invasion processes. South African Journal of Botany. 2014; 93: 157-166. DOI:10.1016/j.sajb.2014.04.008
21. Ullah N, Haq IU, Safdar N & Mirza B. Physiological and biochemical mechanisms of allelopathy mediated by the allelochemical extracts of Phytolacca latbenia (Moq.) H. Walter. Toxicology and Industrial Health. 2015; 31(10): 931-937. DOI:10.1177/0748233713483205
22. Ashraf R, Sultana B, Yaqoob S & Iqbal M. Allelochemicals and crop management: A review. Curr Science. 2017; 3(1): 1-13
. 23. Poulin RX, Hogan S, Poulson-Ellestad KL, Brown E, Fernandez FM & Kubanek J. Karenia brevis allelopathy compromises the lipidome, membrane integrity, and photosynthesis of competitors. Scientific Reports. 2018; 8(1): 9572. DOI:10.1038/s41598-018-27845-9
24. Araniti F, Sanchez-Moreiras AM, Grana E, Reigosa MJ & Abenavoli MR. Terpenoid trans-caryophyllene inhibits weed germination and induces plant water status alteration and oxidative damage in adult Arabidopsis. Plant biology. 2017; 19(1): 79-89. DOI:10.1111/plb.12471
25. Goga M, Antreich SJ, Bačkor M, Weckwerth W & Lang I. Lichen secondary metabolites affect growth of Physcomitrella patens by allelopathy. Protoplasma. 2017; 254(3): 1307-1315. DOI:10.1007/s00709-016-1022-7
26. Li P, Ding L, Zhang L, He J & Huan Z. Weisiensin B inhibits primary and lateral root development by interfering with polar auxin transport in Arabidopsis thaliana. Plant Physiology and Biochemistry. 2019; 139: 738-745. DOI:10.1016/j.plaphy.2019.04.020
27. Lupini A, Araniti F, Mauceri A, Princi MP, Sorgona A, Sunseri F, Varanini Z & Abenavoli MR. Coumarin enhances nitrate uptake in maize roots through modulation of plasma membrane H+-ATPase activity. Plant Biology. 2018; 20(2): 390-398. DOI:10.1111/plb.12674
28. Mohammadkhani N & Servati M. Nutrient concentration in wheat and soil under allelopathy treatments. Journal Plant Research. 2018; 131(1): 143-155. DOI:10.1007/s10265-017-0981-x
29. Syahri R, Widaryanto E & Wicaksono KP. Bioactive compound from mangoes leaves extract as potential soil bioherbicide to control amaranth weed (Amaranthus spinosus Linn.). Journal of Degraded and Mining Lands Management. 2017; 4(3): 829-836. DOI:10.15243/jdmlm.2017.043.829
30. Bortolo TDSC, Marchiosi R, Vigano J, de Cassia S-S, Ferro AP, Barreto GE, de Souza BG, Abrahao J, dos Santos WD & Ferrarese-Filho O. Trans-aconitic acid inhibits the growth and photosynthesis of Glycine max. Plant Physiology and Biochemistry. 2018. 132: 490-496. DOI:10.1016/j.plaphy.2018.09.036
31. Long M, Tallec K, Soudant P, Le GF, Donval A, Lambert C, Sarthou G, Jolley DF & Hegaret H. Allelochemicals from Alexandrium minutum induce rapid inhibition of metabolism and modify the membranes from Chaetoceros muelleri. Algal Research. 2018; 35: 508-518. DOI:10.1016/j.algal.2018.09.023
32. Lelong A, Haberkorn H, Le Goic N, Hegaret H & Soudant P. A new insight into allelopathic effects of Alexandrium minutum on photosynthesis and respiration of the diatom Chaetoceros neogracile revealed by photosynthetic-performance analysis and flow cytometry. Microbial Ecology. 2011; 62(4): 919-930. DOI:10.1007/s00248-011-9889-5
33. Yuliyani ED, Darmanti S & Hastuti ED. Allelochemical effects of Chromolaena odorata L. against photosynthetic pigments and stomata of Ageratum conyzoides L. leaves. Journal of physics: conference series. 2019; 1217(1): 012149. DOI:10.1088/1742-6596/1217/1/012149
34. Shahzad B, Rehman S, Bajwa AA, Hussain S, Rehman A, Cheema SA, Abbas T, Ali A, Shah L, Adkins S & Li P. Utilizing the allelopathic potential of Brassica species for sustainable crop production: A review. Journal of Plant Growth Regulation. 2019; 38(1): 343-356. DOI:10.1007/s00344-018-9798-7
35. Dayan FE, Howell JL & Weidenhamer JD. Dynamic root exudation of sorgoleone and its in planta mechanism of action. Journal of Experimental Botany. 2009; 60(7): 2107-2117. DOI:10.1093/jxb/erp082
36. Mehta P, Jajoo A, Mathur S, & Bharti S. Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves. Plant Physiology and Biochemistry. 2010; 48 (1): 16-20. DOI:10.1016/j.plaphy.2009.10.006
37. Sowiński J, Dayan FE, Głąb L & Adamczewska-Sowińska K. Sorghum allelopathy for sustainable weed management. Plant defence: Biological control. 2020; 263-288. DOI:10.1007/978-3-030-51034-3-11
38. Seigler, DS. Chemistry and mechanisms of allelopathic interaction. Agronomy Journal. 1996; 88: 867. DOI:10.2134/agronj1996.00021962003600060006x
39.
Narwal, S. Allelopathy in Crop Production. Scientific Publishers. 2004; 303 pp. 40. Teerarak M, Charoenying P & Laosinwattan C. Physiological and cellular mechanisms of natural herbicide resource from Aglaia odorata Lour. on bioassay plants. Acta Physiologiae Plantarum. 2012; 34(4): 1277-1285. DOI:10.1007/s11738-011-0923-5
41. Singh HP, Batish DR, Kaur S, Setia N & Kohli RK. Effects of 2-benzoxazolinone on the germination, early growth and morphogenetic response of mung bean (Phaseolus aureus). Annals of Applied Biology. 2005; 147(3): 267-274. DOI:10.1111/j.1744-7348.2005.00031.x
42. Batish DR, Gupta P, Singh HP & Kohli RK. L-DOPA (L-3,4-dihydroxyphenylalanine) affects rooting potential and associated biochemical changes in hypocotyl of mung bean, and inhibits mitotic activity in onion root tips. Plant Growth Regulation. 2006; 49(2): 229-235. DOI:10.1007/s10725-006-9114-6
43. Gulzar A, Siddiqui MB & Shazia B. Allelopathic potential of rhizosphere powder amended soil (LPRS) and inorganic profiling of Eclipta alba (L.) Hassk. On Growth of Crops and Weeds. Thai Journal of Agricultural Science. 2014; 47(3): 133-139
. 44. Mushtaq W, Quratul-Ain & Siddiqui MB. Cytotoxic allelochemicals induce ultrastructural modifications in Cassia tora L. and mitotic changes in Allium cepa L.: A weed versus weed allelopathy approach. Protoplasma. 2019; 256(3): 857-871. DOI:10.1007/s00709018-01343-1
45. Jilani G, Mahmood S, Chaudhry AN, Hassan I & Akram M. Allelochemicals: sources, toxicity and microbial transformation in soil-A review. Annals of Microbiology. 2008; 58(3): 351-357. DOI:10.1007/BF03175528
46. Gatti AB, Ferreira AG, Arduin M & Perez SCGDA. Allelopathic effects of aqueous extracts of Artistolochia esperanzae O. Kuntze on development of Sesamum indicum L. seedlings. Acta Botanica Brasilica. 2010; 24(2): 454-461. DOI:10.1590/S0102-33062010000200016
47. Uniyal AK & Chhetri S. An assessment of phytotoxic potential of promising agroforestry trees on germination and growth pattern of traditional field crops of Sikkim Himalaya, India. American Eurasian Journal Scientific Research. 2010; 5(4): 249-256
. 48. Kobayashi K. Factors affecting phytotoxic activity of allelochemicals in soil. Weed Biology and Management. 2004; 4(1): 1-7. DOI:10.1111/j.1445-6664.2003.00112.x
49. Farooq N, Abbas T, Tanveer A & Jabran K. Allelopathy for weed management. Reference Series in Phytochemistry Co-Evolution of Secondary Metabolites. 2020; pp 505-519. DOI:10.1007/978-3-319-6397-6-16
50. Lambers H, Mougel C, Jaillard B & Hinsinger P. Plant-microbesoil interactions in the rhizosphere: an evolutionary perspective. Plant and Soil. 2009; 321(1): 83-115. DOI:10.1007/s11104-009-0042-x
51. Jamil M, Cheema ZA, Mushtaq MN, Farooq M & Cheema MA. Alternative control of wild oat and canary grass in wheat fields by allelopathic plant water extracts. Agronomy for Sustainable Development. 2009; 29(3): 475-482. DOI:10.1051/agro/2009007
52. Bhadoria PBS. Allelopathy: a natural way towards weed management. American Journal of Experimental Agriculture. 2011; 1(1): 7-20. DOI:10.9734/AJEA/2011/002
53. Amb MK & Ahluwalia AS. Allelopathy: potential role to achieve new milestones in rice cultivation. Rice Science. 2016; 23(4): 165-183. DOI:10.1016/j.rsci.2016.06.001
54. Cheema ZA, Farooq M & Khaliq A. Application of allelopathy in crop production: Success story from Pakistan. Allelopathy: Current trends and future applications. Springer, Berlin. 2013; 113-143. DOI:10.1007/978-3-642-30595-5-6
55. Abbas T, Nadeem MA, Tanveer A & Chauhan BS. Can hormesis of plant-released phytotoxins be used to boost and sustain crop production? Crop Protection. 2017; 93: 69-76. DOI:10.1016/j.cropro.2016.11.020
56. Gliessman SR. Allelopathic Effects of Crops. Technology and Engineering, Santa Cruz, 2007; 384 p
. 57. Sani I, bdulhamid A & Bello F. Eucalyptus camaldulensis: Phytochemical composition of ethanolic and aqueous extracts of the leaves, stembark, root, fruits and seeds. Journal of Scientific and Innovative Research. 2014; 3(5): 523-526. DOI:10.31254/jsir.2014.3510
58. Shayoub M El, Dawoud ADH, Abdelmageed MAM, Ehassan AM. & Ehassan AM. Phytochemical analysis of leaves extract of Eucalyptus camaldulensis Dehnh. Omdurman Journal of Pharmaceutical Science. 2015; 2(1): 64-71
. 59. Cossalter C & Pye-Smith C. Fast-wood Forestry: Myths and Realities. Center for International Forestry Research. Indonesia. 2003; 1: 54. DOI:10.17528/cifor/001257
60. Assareh MH & Sardabi H. Eucalyptus, Description, Illustration and Propagation by Advanced Techniques. Research Institute of Forests and Rangelands Publications. 2007; 672 pp
. 61. Vecchio M, Loganes C & Minto C. Beneficial and Healthy Properties of Eucalyptus Plants: A Great Potential Use. The Open Agriculture Journal, 2016; 10(1): 52-57. DOI:10.2174/1874331501610010052
62. Hartman H, Kester D & Davis F. Plant Propagation, Principle and Practices. Prentice Hall International Editions. 1990; 647 pp
. 63. Ikic I, Maricevic M, Tomasovic S, Gunjaca J, Sarcevic Z & Arcevic H. The effect of germination temperature on seed dormancy in creation-grown winter wheats. Euphytica. 2012; 188(1): 25-34. DOI:10.1007/s10681-012-0735-8
64. Arnon DI. Copper enzymes is isolated chloroplasts pollyphenol oxidase in Beta vulgaris. Plant physiology. 1949; 24(1): 1-15
. 65. Tanase C, Bujor OC & Popa VI. Phenolic natural compounds and their influence on physiological processes in plants. In Polyphenols in Plants, 2nd ed.; Watson, RR. Ed.; Academic Press: Cambridge MA, USA, 2019; pp. 45-58
. 66. Li J, Evon P, Ballas S, Trinh HK, Xu L, Van Poucke C, Van Droogenbroeck B, Motti P, Mangelinckx S, Ramirez A, et al. Sunflower bak extract as a biostimulant suppresses reactive oxygen species in salt-stressed Arabidopsis. Frontiers Plant Science. 2022; 13: 837441. DOI:10.3389/fpls.2022.837441
67. Rashid HU, Khan A, Hassan G, Khan SU, Saeed M, Khan SA, Khan SM & Hashim S. Weed suppression in maize (Zea mays L.) through the allelopathic effects of sorghum [Sorghum bicolor (L.) Conard Moench.] sunflower (Helianthus annuus L.) and parthenium (Parthenium hysterophorus L.) plants. Applied Ecology and Environmental Research. 2020; 18(4): 5187-5197. DOI:10.15666/aeer/1804-51875197
68. Pula J, Zandi P, Stachurska-Swakori A, Barabasz-Krasny B, Mozdžen K & Wang Y. Influence of alcoholic extracts from Helianthus annnus L. roots on the photosynthetic activity of Sinapis alba L. cv. Barka plants. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science. 2019; 70: 8-13. DOI:10.1080/09064710.2019.1661509
69. Gurmu WR. Effects of Aqueous Eucalyptus Extracts on Seed Germination and Seedling Growth of Phaseolus vulgaris L. and Zea mays L. Open Access Library Journal. 2015; 2(9): 1-8. DOI:10.4236/oalib.1101741
70. Awadallah B & Eman O. Allelopathic Effect of Eucalyptus (Eucalyptus camaldulensis Dehnh) Leaf on Seed Germination and Seedling Growth of some Poaceous Crops. International Journal of Forest, Animal and Fisheries Research. 2017; 1(4): 34-40. DOI:10.22161/ijfaf.1.4.4
71. Sasikumar K, Vijayalakshmi C, & Parthiban KT. Alleopathic effects of Eucalyptus on blackgram (Phaseolus mungo L.). Allelopathy Journal. 2002; 9(2): 205-214
. 72. Shaddam MO, Aktar MM, Shiton AKR, Islam MS & Rahman M M. Allelopathic effects of Eucalyptus camaldulensis on germination and seedling growth of mungbean. Journal of Bioscience and Agriculture Research. 2020; 23(1): 1894-1900. DOI:10.18801/jbar.230120.233
73. Oliveira A, Pereira S, Cândido A, Laura V& Peres M. Can al-lelopathic grasses limit seed germination and seedling growth of mutambo? A test with two species of Brachiaria grasses. Planta Daninha. 2016; 34(4): 639-648. DOI:10.1590/s0100-83582016340400003
74. Alshahrani TS & Suansa NI. Application of biochar to alleviate effects of allelopathic chemicals on seed germination and seedling growth. BioResources. 2020; 15(1): 382-400. DOI:10.15376/biores.15.1.382-400
75. Zohaib A, Tabassum T, Anjum SA, Abbas T & Nazir U. Allelopathic effect of some associated weeds of wheat on germinability and biomass production of wheat seedlings. Planta Daninha. 2017; 35(1): 1-12. DOI:10.1590/s0100-83582017350100089
76. Nishida N, Tamotsu S, Nagata N, Saito C & Sakai A. Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. Journal of Chemical Ecology. 2005; 31(5): 1187-1203. DOI:10.1007/s10886-005-4256-y
77. Ataollahi R, Dejam M & Khaleghi SS. Phytotoxic effects of Eucalyptus globulus leaf extract on Solanum nigrum. South-Western Journal. Horticulture Biology Environment. 2014; 5(1): 43-53
. 78. Morsi MM & Abdelmigid HM. Allelopathic activity of Eucalyptus globulus leaf aqueous extract on Hordeum vulgare growth and cytogenetic behaviour. Australian Journal of Crop Science. 2016; 10(11): 1551-1556. DOI:10.21475/ajcs.2016.10.11.PNE122
79. Janusauskaite D & Kadzien G. Influence of different intensities of tillage on physiological characteristics and productivity of crop-rotation plants. Plants 2022; 11(22): 3107. DOI:10.3390/plants11223107
80. Ayalew A & Asfaw Z. Allelophatic Effects of Gravellia Robusta, Eucalyptus Camaldulensis and Casuarina Equisetifolia on Germination and Root Length of Maize and Wheat. International Journal of Research Studies in Agricultural Sciences (IJRSAS). 2020; 6(11): 15-20. DOI:10.20431/2454-6224.0611004
81. Kandhro MN, Jogi Q, Buriro M, Soomro AA, Laghari GM, Khaskheli AN. Germination and seedling growth of Convolvulus arvensis L. and Cyperus rotundus L. under the allelopathic influence of Eucalyptus camaldulensis (L.) leaves. Sarhad Journal of Agriculture. 2016; 32(3): 252-257. DOI:10.17582/journal.sja/2016.32.3.252.257
82. Sousa MV, Farias SGG, Castro DP, Silva RB, Silva DYBO, Dias BAS, Silva AF, Santos GNL, Matos DCP & Oliveira CVA. Allelopathy of the Leaf Extract of Eucalyptus Genetic Material on the Physiological Performance of Millet Seeds. American Journal of Plant Sciences. 2018; 9: 34-45. DOI:10.4236/ajps.2018.91004
83. Noor Mohamed MB, Shukla AK, Jangid BL & Vikas Khandelwal. Allelopathy effect of eucalyptus on seed germination and growth of calendula and marigold. Indian Journal of Horticulture. 2021; 73(3): 304-310. DOI:10.5958/0974-0112.2021.00044.X
84. Dafaallah AB & El-Twom EO. Allelopathic effect of eucalyptus (Eucalyptus camaldulensis Dehnh) leaf on seed germination and seedling growth of some poaceous crops. International Journal of Forest, Animal and Fisheries Research (IJFAF). 2017; 1(4): 34-40. DOI:10.22161/ijfaf.1.4.4
85. Lwan SA, Suleiman K & Iortsuum DN. Effects of some allelochemicals of Eucalyptus species on germination and radicle growth of Arachishypogya. Bayero Journal of Pure and Applied Sciences. 2011; 4(1): 59-62. DOI:10.4314/bajopas.v4i1.13
86. Saeed JA, Al-Rawi ER & Ibraheem FK. The effect of aqueous leaves extracts of Eucalyptus camaldulensis on germination and growth of three weed species. Rafidain Journal of Science. 2013; 24(3): 1-10. DOI:10.33899/rjs.2013.71034
87. Boulekbache-Makhlouf L, Meudec E, Mazauric JP, Madani K & Cheynier V. Qualitative and semi-quantitative analysis of phenolics in Eucalyptus globulus leaves by high-performance liquid chromatography coupled with diode array detection and electrospray ionisation mass spectrometry. Phytochem Analysis. 2013; 24(2): 162-170. DOI:10.1002/pca.2396
88. Yong WTL, Ades PK, Goodger JQ, Bossinger G, Runa FA, Sandhu KS & Tibbits JF. Using essential oil composition to discriminate between myrtle rust phenotypes in Eucalyptus globulus and Eucalyptus obliqua. Industrial Crops and Products. 2019; 140: 111595. DOI:10.1016/j.indcrop.2019.111595
89. Jaime MDI & Ferrer MAB. Post-emergent herbicidal activity of Eucalyptus globulus Labill. essential oil. Nereis: Iberoamericana Interdisciplinar de Métodos, Modelización y Simulación. 2018; 25-36. DOI:10.3390/mol2net-04-05374
90.Vaghar MS, Sayfzadeh S, Zakerin HR, Kobraee S & Valadabadi SA. Foliar application of iron, zinc, and manganese nano-chelates improves physiological indicators and soybean yield under water deficit stress. Journal Plant Nutrition. 2020; 43(18): 2740-2756. DOI: 10.1080/01904167.2020. 1793180
91. Hussain I, Baloch MS, Khan EA & Khan AA. Morphological and physiological response of maize to some allelopathic plant extracts. Pakistan Journal of Weed Science Research; Islamabad. 2019; 25(2): 137-145
. 92. Siyar S, Majeed A, Muhammad Z, Ali H & Inayat N. Allelopathic effect of aqueous extracts of three weed species on the growth and leaf chlorophyll content of bread wheat. Acta Ecologica Sinica. 2019; 39: 63-68. DOI:10.1016/j.chnaes.2018.05.007
93. Nafees A & Abbas A. Bioassay test of allelopathic potential of sunflower (Helianthus annuus L.) against mung bean (Vigna radiate (L.) R.Wilczek). Journal of Phytosciences. 2021; 1(1): 70-79
. 94. Pruthvi Raj HM, Dhananjaya BN, Maruthi Prasad BN, Raghunatha Reddy RL, Shankarappa TH & Ehsaullah Seraji. Allelopathic potentiality of eucalyptus tree parts on germination and seedlings growth of finger millet (Eleusine coracana) and tomato (Solanum lycopersicum L.). The Pharma Innovation Journal. 2022; 11(12): 4962-4969
. 95. Chi-Ming Y, Chyoung-Ni L, & Chang-Hung C. Effect of three allelopathic phenolics on chlorophyll accumulation of rice (Oryza sativa) seedling: I. Inhibition of supply-orientation. Botanical Bulletin of Academia Sinica. 2002; 43: 299-304
. 96. Daizy RB, Lavanya K, Singh HP, & Kohli RK. Phenolic allelochemicals released by Chenopodium murale affect the growth nodulation and macromolecule content in chickpea and pea. Plant Growth Regulation. 2007; 51(2): 119-128. DOI:10.1007/s10725-006-9153-z
97. Gniazdowska A & Bogatek R. Allelopathic interactions between plants. Multi-site action of allelochemicals. Acta Physiologiae Plantarum. 2005; 27(3): 395-407. DOI:10.1007/s11738-005-0017-3
98. Taiz L & Zeiger E. Plant Physiology. 5th Edition, Artmed, Porto Alegre. 2013
. 99. Radhakrishnan R, Alqarawi AA & Abd_Allah EF. Bioherbicides: Current knowledge on weed control mechanism. Ecotoxicology and Environmental Safety. 2018; 158(2): 131-138. DOI:10.1016/j.ecoenv.2018.04.018
.