مطالعه تاثیر گرافن بر ویژگی¬های ولکانش، ریخت¬، شارشی و مکانیکی لاستیک طبیعی (NR)، لاستیک کلروبیوتیل (CIIR) و مخلوط NR/CIIR
محورهای موضوعی : مهندسی پلیمرمرضیه شریفی تشنیزی 1 , اعظم جلالی آرانی 2 , Marianella Hernández Santana 3
1 - دانشجوی دکتری دانشکده مهندسی پلیمر و رنگ، دانشگاه صنعتی امیرکبیر، تهران، ایران.
2 - دانشیار دانشکده مهندسی پلیمر و رنگ، دانشگاه صنعتی امیرکبیر، تهران، ایران.
3 - پژوهشگر موسسه علوم و تکنولوژی پلیمر (ICTP-CSIC)، مادرید، اسپانیا.
کلید واژه: لاستیک, نانوچندسازه, گرافن, ویژگیهای شارشی, ویژگیهای مکانیکی.,
چکیده مقاله :
نانوچندسازههای لاستیک طبیعی (NR)، لاستیک کلروبیوتیل (CIIR) و مخلوط لاستیک طبیعی/ لاستیک کلروبیوتیل (NR/CIIR) با ترکیب درصد 50/50، بدون گرافن و با phr 7/0 گرافن بهروش اختلاط مذاب تهیه شدند. حضور گرافن در آمیزهها، بهدلیل افزایش چگالی پیوندهای عرضی، موجب افزایش مقدار تفاوت بیشینه و کمینه گشتاور در آزمون شارشسنجی پخت شد. نتیجههای بهدستآمده از آزمون تورم این نتیجه را تایید کرد. ساختار نانوچندسازه و مقدار پراکنش گرافن با میکروسکوپ الکترونی روبشی گسیل میدانی (FESEM) بررسی شد. تصویرها توزیع یکنواخت و پراکندگی مناسب نانولایههای گرافن در بستر آمیزههای لاستیکی را نشان داد. در ارزیابی رفتار شارشی مذاب نشان داده شد که افزودن گرافن به هر سه آمیزه موجب افزایش مدول ذخیره و گرانروی مختلط در بسامدهای کم میشود که بیانگر توزیع یکنواخت نانولایههای گرافن در بستر آمیزه و برهمکنشهای مناسب گرافن و زنجیر بسپار است. مطالعه ویژگیهای مکانیکی نمونهها با آزمون کششی نشاندهنده تاثیر تقویتکنندگی گرافن بر ویژگیهای مکانیکی نانوچندسازهها بود بهگونهای که افزودن phr 7/0گرافن به آمیزههای NR، CIIR و مخلوط NR/CIIR موجب افزایش مدول یانگ بهترتیب به مقدار 42 ، 40 و 16 درصد شد.
Nanocomposites of natural rubber (NR), chlorobutyl rubber (CIIR) and their blend (NR/CIIR; 50/50), containing 0.7 phr of graphene were prepared by melt mixing method. The use of graphene caused an increase in torque difference in the rheometric test, which was attributed to an increase in the crosslink density. This result was confirmed by the swelling test. The microstructure of nanocomposites and dispersion of graphene in each of the samples were examined by field emission scanning electron microscopy (FESEM). FESEM images indicated uniform dispersion and distribution of graphene nanolayers in the elastomer matrices. The melt rheological behavior demonstrated that the addition of graphene to the compounds increased the viscosity of the complex and storage modulus at the low frequency which indicated uniform dispersion and enhanced interaction between the nanolayers of graphene and the rubber matrix. Mechanical properties of the samples were investigated by tensile test. The obtained results revealed the improvement of mechanical properties of nanocomposites. The young modulus of NR, CIIR and NR/CIIR blend, in the presence of 0.7 phr graphene were improved about 42, 40 and 16%, respectively.
1. Gu W, Zhang W, Li X, Zhu H, Wei J, Li Z, et al. Graphene sheets from worm-like exfoliated graphite. J Mater Chem. 2009;19(21):3367–9.
2. Sun PZ, Yang Q, Kuang WJ, Stebunov Y V., Xiong WQ, Yu J, et al. Limits on gas impermeability of graphene. Nature. 2020;579(7798):229–32.
3. Wolf C, Angellier-Coussy H, Gontard N, Doghieri F, Guillard V. How the shape of fillers affects the barrier properties of polymer/non-porous particles nanocomposites: A review. J Memb Sci. 2018;556(January):393–418.
4. Frasca D, Schulze D, Wachtendorf V, Huth C, Schartel B. Multifunctional multilayer graphene/elastomer nanocomposites. Eur Polym J [Internet]. 2015;71:99–113. Available from: http://dx.doi.org/10.1016/j.eurpolymj.2015.07.050
5. Kim H, Abdala AA, MacOsko CW. Graphene/polymer nanocomposites. Macromolecules. 2010;43(16):6515–30.
6. Hussain F, Hojjati M, Okamoto M, Gorga RE. Review article: Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview. J Compos Mater. 2006;40(17):1511–75.
7. Kumar S, Chattopadhyay S, Padmanabhan R, Sreejesh A, Nair S, Unnikrishnan G, et al. Tailoring permeation characteristics of bromobutyl rubber with polyepichlorohydrin and graphene nanoplatelets. Mater Res Express [Internet]. 2015;2(10):105007. Available from: http://dx.doi.org/10.1088/2053-1591/2/1 [1] Gu W, Zhang W, Li X, Zhu H, Wei J, Li Z, et al. Graphene sheets from worm-like exfoliated graphite. J Mater Chem. 2009;19(21):3367–9. doi:10.1039/b904093p [2] Sun PZ, Yang Q, Kuang WJ, Stebunov Y V., Xiong WQ, Yu J, et al. Limits on gas impermeability of graphene. Nature. 2020;579(7798):229–32. doi:10.1038/s41586-020-2070-x [3] Wolf C, Angellier-Coussy H, Gontard N, Doghieri F, Guillard V. How the shape of fillers affects the barrier properties of polymer/non-porous particles nanocomposites: A review. J Memb Sci. 2018;556:393–418. doi:10.1016/j.memsci.2018.03.085 [4] Frasca D, Schulze D, Wachtendorf V, Huth C, Schartel B. Multifunctional multilayer graphene/elastomer nanocomposites. Eur Polym J. 2015;71:99–113. doi: org/10.1016/j.eurpolymj.2015.07.050 [5] Kim H, Abdala AA, MacOsko CW. Graphene/polymer nanocomposites. Macromolecules. 2010;43(16):6515–30. doi:10.1021/ma100572e [6] Hussain F, Hojjati M, Okamoto M, Gorga RE. Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview. J Compos Mater. 2006;40(17):1511–75. doi:10.1177/0021998306067321 [7] Kumar S, Chattopadhyay S, Padmanabhan R, Sreejesh A, Nair S, Unnikrishnan G, et al. Tailoring permeation characteristics of bromobutyl rubber with polyepichlorohydrin and graphene nanoplatelets. Mater Res Express. 2015;2(10):105007. doi: org/10.1088/2053-1591/2/10/105007 [8] Zhang Z, Chen P, Nie W, Xu Y, Zhou Y. Enhanced mechanical, thermal and solvent resistance of silicone rubber reinforced by organosilica nanoparticles modified graphene oxide. Polymer (Guildf). 2020;203:122772. doi: org/10.1016/j.polymer.2020.122772 [9] Wang J, Zhang K, Bu Q, Lavorgna M, Xia H. Graphene-rubber nanocomposites: Preparation, Structure, and Properties. In: Kaneko S, Mele P, Endo T. Tsuchia T, Tanaka K, Yoshimura M, Hul D, editors. Carbon-related materials in recognition of nobel lectures by Prof. Akira Suzuki in ICCE. Cham: Springer International Publishing; 2017. p. 175–209. doi: 10.1007/978-3-319-61651-3_9 [10] Frasca D, Schulze D, Böhning M, Krafft B, Schartel B. Multilayer graphene chlorine isobutyl isoprene rubber nanocomposites: Influence of the multilayer graphene concentration on physical and flame-retardant properties. Rubber Chem Technol. 2016;89(2):316–34. doi:10.5254/rct.15.84838 [11] Sperling LH. Introduction to Physical Polymer Science. US: Wiley-Interscience; 2005. doi:10.1002/0471757128 [12] Malas A, Das CK. Influence of modified graphite flakes on the physical, thermo-mechanical and barrier properties of butyl rubber. J Alloys Compd. 2017;699:38–46. doi:10.1016/j.jallcom.2016.12.232 [13] Wu J, Xing W, Huang G, Li H, Tang M, Wu S, et al. Vulcanization kinetics of graphene/natural rubber nanocomposites. Polymer (Guildf). 2013;54(13):3314–23. doi:10.1016/j.polymer.2013.04.044 [14] Malas A, Das CK, Das A, Heinrich G. Development of expanded graphite filled natural rubber vulcanizates in presence and absence of carbon black: Mechanical, thermal and morphological properties. Mater Des 2012;39:410–7. doi:10.1016/j.matdes.2012.03.007 [15] Yang Z, Peng H, Wang W, Liu T. Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci. 2010;116(5):2658–67. doi:10.1002/app.30451 [16] Ismail H, Chia HH. The effects of multifunctional additive and vulcanization systems on silica filled epoxidized natural rubber compounds. Eur Polym J. 1998;34(12):1857–63. doi:10.1016/S0014-3057(98)00029-9 [17] Teh PL, Ishak ZAM, Hashim AS, Karger-Kocsis J, Ishiaku US. Effects of epoxidized natural rubber as a compatibilizer in melt compounded natural rubber-organoclay nanocomposites. Eur Polym J. 2004;40(11):2513–21. doi:10.1016/j.eurpolymj.2004.06.025 [18] Zachariah AK, Chandra AK, Mohammed PK, Parameswaranpillai J, Thomas S. Experiments and modeling of non-linear viscoelastic responses in natural rubber and chlorobutyl rubber nanocomposites. Appl Clay Sci. 2016;123:1–10. doi: org/10.1016/j.clay.2016.01.004 [19] Pojanavaraphan T, Schiraldi DA, Magaraphan R. Mechanical, rheological, and swelling behavior of natural rubber/montmorillonite aerogels prepared by freeze-drying. Appl Clay Sci. 2010;50(2):271–9.doi: org/10.1016/j.clay.2010.08.020 [20] Sadeghi Ghari H, Jalali-Arani A. Nanocomposites based on natural rubber, organoclay and nano-calcium carbonate: Study on the structure, cure behavior, static and dynamic-mechanical properties. Appl Clay Sci. 2016;119:348–57. doi: org/10.1016/j.clay.2015.11.001 [21] Böhning M, Frasca D, Schulze D, Schartel B. Multilayer graphene/elastomer nanocomposites. In: Yaragalla S, Kumar MR, Thomas S, Kalarikkal N, Hanna J, editors. MariaCarbon-based nanofiller and their rubber nanocomposites. Elsevier Inc.; 2019. p. 139–200. doi: org/10.1016/B978-0-12-817342-8.00006-8 [22] Hernández M, Mar Bernal M, Grande AM, Zhong N, Van Der Zwaag S, García SJ. Effect of graphene content on the restoration of mechanical, electrical and thermal functionalities of a self-healing natural rubber. Smart Mater Struct. 2017;26(2). doi:10.1088/1361-665X/aa71f5 [23] Thuruthil Raju A, Dash B, Dey P, Nair S, Naskar K. Evaluation of air permeability characteristics on the hybridization of carbon black with graphene nanoplatelets in bromobutyl rubber/epoxidized natural rubber composites for inner-liner applications. Polym Adv Technol. 2020;31(10):2390–402. doi:10.1088/1361-665X/aa71f5