مروری بر آسایش حرارتی در فضاهای واسط بسته فضاهای آموزشی
محورهای موضوعی : دو فصلنامه فضای زیستساناز مطلایی 1 , مقدی خدابخشیان 2 , فاطمه السادات مجیدی 3 , مهدیه آب روش 4
1 - دانشجو دکتری تخصصی، گروه معماری، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران
2 - استادیار، گروه معماری، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران
3 - استادیار، گروه معماری، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران
4 - دانشکدگان هنرهای زیبا ،معماری، دانشگاه تهران، تهران،ایران
کلید واژه: فضای واسط بسته, آسایش حرارتی , ادراک حرارتی , مدل آسایش حرارتی, فضاهای آموزشی,
چکیده مقاله :
آسایش حرارتی در فضاهای واسط بسته یکی از موضوعات مهم در طراحی معماری است که بازدهی فضا در دوران بهره برداری را تحت تاثیر قرار میدهد.بیشتر مطالعات اخیر در حوزه آسایش حرارتی در ایران مربوط به ساختمان های سنتی مسکونی صورت گرفته و کمتر به فضاهای آموزشی و عمومی پرداخته است. فضاهای واسط بسته ساختمان ها به دلیل پیوند حرارتی قوی با محیط خارجی نسبت به فضای داخلی اصلی، نیاز به استانداردهای حرارتی متفاوتی دارند. این فضاها در داخل ساختمان های عمومی معاصر شامل فضاهای سیرکولاسیون، لابی ها، کریدورها و آتریومها می شوند. این فضاها به دلیل مکان قرارگیری آنها، ارتباط حرارتی بیشتری با بیرون دارند و لذا، جدایی حرارتی آنها از فضاهای داخلی ساختمان بیشتر است. با این حال، سیستمهای تهویه و استانداردهای آسایش حرارتی فضاهای اصلی برای این نوع فضاها نیز اعمال میشود که میتواند مصرف انرژی را افزایش دهد. همچنین، این فضاها از نظر نوع استفاده، مدت حضور افراد در این فضاها، نوع پوشش کاربران و نیز فعالیت آن ها با فضاهای اصلی متفاوت است. کاربران در بدو ورود به ساختمان با این فضاها روبرو می شوند و درک احساس حرارتی در این فضاها می تواند روی احساس آسایش حرارتی افراد در کل فضاهای داخلی تاثیرگذار باشد. لذا، این مقاله مروری با استفاده از استدلال قیاسی و روش مطالعات کتابخانه ای پژوهشهای پیشین به تبیین مبانی نظری و از طریق مشاهده به بررسی شرایط محیطی و رفتار ساکنان در فضاهای واسط بسته مراکز آموزش عالی در اقلیم گرم و خشک ایران پرداخته است. یافته های پژوهشگران پیشین نشان میدهد که استانداردهای متداول برای طراحی این فضاها مناسب نیستند و میتوان با تغییراتی در این استانداردها، به صرفهجویی انرژی در کل ساختمان دست یافت. همینطور، پژوهش ها نشان می دهند استفاده از مدل سازگاری حرارتی (AM) برای تعیین دمای خنثی و آسایش حرارتی در این فضاها، بهتر از مدل آزمایشگاهی (PMV) است.
Thermal comfort in enclosed intermediary spaces is an important aspect of architectural design that affects the performance of buildings during their operational phase.Until optimal thermal conditions are present in a space, an individual cannot make the best use of that space. Most recent studies on thermal comfort in Iran have focused on traditional residential buildings, with less attention given to public and educational spaces. Intermediary enclosed spaces in buildings, due to their stronger thermal connection to the external environment compared to the main interior spaces, require different thermal standards. In contemporary public buildings, these spaces include circulation areas, lobbies, corridors, and atriums. Their location makes them more thermally exposed to the outside, resulting in greater thermal separation from the building's interior spaces. However, ventilation systems and thermal comfort standards designed for main spaces are often applied to these areas, which can increase energy consumption.Moreover, these spaces differ from the main interior spaces in terms of their usage, the duration of occupant presence, the type of clothing worn by users, and their activities. Users encounter these spaces upon entering the building, and their thermal perception in these areas can impact their overall comfort in the interior spaces. This review article, through deductive reasoning and a literature review of previous research, explains the theoretical foundations of thermal comfort and uses observations to examine environmental conditions and occupant behavior in enclosed intermediary spaces of higher education institutions in Iran’s hot and dry climate. Previous research indicates that conventional standards for designing these spaces are unsuitable and that modifying them could lead to energy savings across the building. Additionally, research shows that using the Adaptive Model (AM) to determine neutral temperature and thermal comfort in these spaces is more effective than the Predicted Mean Vote (PMV) model, offering a more accurate assessment of thermal comfort in these dynamic spaces.
اخلاقی نژاد, فاطمه, و باقری سبزوار, هادی. (1402). ارزیابی آسایش حرارتی فضای باز در فرمهای مختلف حیاط در مقیاس همسایگی نمونه موردی: اقلیم سرد و نیمه خشک سبزوار. نشریه هنرهای زیبا: معماری و شهرسازی, 28(1), 45-61. doi: 10.22059/jfaup.2023.352410.672828
حسنی لیچایی, بهمن, حیدری, شاهین, & مفیدی شمیرانی, سید مجید. (1401). بررسی آسایش حرارتی در فضاهای نیمه باز (مورد پژوهی: خانههای بومی شهر رشت). معماری و شهرسازی پایدار, 10(2), 165-184. doi: 10.22061/jsaud.2022.8201.1935
حیدری ، شاهین ( 1393): سازگاری حرارتی در معماری، انتشارات دانشگاه تهران، تهران، ایران
سحرابی ، سحر ( 1394) ، بررسی کارایی اقلیمی ایوان در ابنیه سنتی اقلیم گرم و خشک، پایان نامه کارشناسی ارشد، دانشگاه هنر تهران، تهران، ایران
سعادت جو ، پریا (1397) ، معماری متخلخل و بهره وری در مصرف انرژی، رساله دکتری، دانشگاه تربیت مدرس، تهران، ایران
غفاری جباری، شهلا (۱۳۹۸)، واﮐﺎوي ﺑﺮﻫﻢ ﮐﻨﺶ ﻋﻮاﻣﻞ ادراك ﻣﺤﯿﻂ ﺣﺮارﺗﯽ ﺑﺮ اﯾﺠﺎد ﺳﺎزﮔﺎري ﺣﺮارﺗﯽ در ﻓﻀﺎﻫﺎي آﻣﻮزﺷﯽ، رساله دکتری، دانشکده معماری و شهرسازی، دانشگاه هنر اسلامی تبریز، تبریز، ایران
قیابکلو ، زهرا (1389) ، مبانی فیزیک ساختمان 2 ( تنظیم شرایط اقلیمی )، انتشارات جهاد دانشگاهی دانشگاه صنعتی امیر کبیر
مجیدی، فاطمه السادات (1397) ، ارائه مدل آسایش حرارتی در فضای باز عمومی محلات مسکونی با تکیه بر نظریه سازگاری، رساله دکتری، دانشگاه آزاد اسلامی واحد اصفهان، اصفهان، ایران
معرفت، مهدي؛ امیدوار، امیر .۱۳۹۲. آسایش حرارتی (محاسبات و ملاحظات طراحی)، چاپ اول، انتشارات: یزدا
مور، فولر (1382) سیستم های کنترل محیط زیست، ترجمه کی نژاد، محمدعلی و آذری، رحمان، انتشارات دانشگاه هنر اسلامی تبریز
میرایی ، الهه (1393) ، ارائه تیپولوژی بهینه بالکن با رویکرد تامین آسایش حرارتی و تهویه طبیعی در ساختمانهای مسکونی، پایان نامه کارشناسی ارشد، دانشگاه ایلام، ایلام، ایران
ASHRAE Standard 55. 2017. Thermal environmental conditions for human occupancy. In American Society of Heating, Refrigerating and Air-Conditioning Engineers. Atlanta, USA
Aparicio-Ruiz P., Munuzuri J. 2021. A Field Study on Adaptive Thermal Comfort in Spanish Primary Classrooms During Summer Season, Building and Environment, V.203. DOI: 10.1016/j.builenv.2021.108089
Benzinger TH.,1979. The physiological basis for thermal comfort. In: Fanger PO, Valbjørn O (eds) Indoor climate. Danish Building Institute, Copenhagen, pp 441–476
Blanchard, A., 2004. Virtual Behavior Settings: An Application of Behavior Setting Theories to Virtual Communities, Journal of Computer Mediated Communication V9 (2), International Communication Association
Chun Ch; Kwok A; Tamura A. (2004). Thermal comfort in transitional spaces—basic concepts: literature review and trial measurement, Building and Environment 39 (2004) 1187 – 1192
Chen, L. & Ng, E., 2012. Outdoor thermal comfort and outdoor activities: A review of research in the past decade. Cities, 29(2), 118-125
Deliahmedova, Medina (2018): Examination of Adaptive Thermal Models for Appropriate Assessment of Thermal Comfort in Transitory and Semi-External Spaces, Master thesis in Energy-efficient and Environmental Buildings Faculty of Engineering, Lund University
Efeoma, Meshack & Uduku, Ola., 2014. Assessing thermal comfort and energy efficiency in tropical African offices using the adaptive approach. Structural Survey. 32. 396-412. 10.1108/SS-03-2014-0015
Efeoma Meshack, 2016. The Influence of Clothing on Adaptive Thermal Comfort, PhD Thesis in Architecture, The university of Edinburgh
Gary T., 1979. Environment Behavior Studies. In: Introduction to Architecture, MoGraw-Hill, New York, pp.51-53
Goldsmith, 1974. “Acclimatisation to cold in man - fact or fiction?”. Heat loss from animals and man: assessment and control. In: Proceedings of the 20th Easter School in Agricultural Science, Univ. of Nottingham, Eds: Monteith, J.L.; and Mount, L.E. London: Butterworths
Givoni, B., 1992. Comfort, Climate Analysis and Building Design Guidelines. Energy and Buildings, 18, 11-23. https://doi.org/10.1016/0378-7788(92)90047-K
Heidari, Sh., 2000. Thermal comfort in Iranian courtyard, PhD Thesis, Sheffield University
Hensen, J.L.M., 1991. On the thermal interaction of building structure and heating and ventilating system. PhD thesis. Technische Universiteit Eindhoven
Heijs, W., Stringer, P., 1987. Comfort as a property of the dwelling: A conceptual analysis. Neth. J. of Housing and environment Res. 2, 331–356 (1987). https://doi.org/10.1007/BF02497979
Hui, S. C. M. and Jiang, J., 2014. Assessment of thermal comfort in transitional spaces, In Proceedings of the Joint Symposium 2014: Change in Building Services for Future, 25 Nov 2014 (Tue), Kowloon Shangri-la Hotel, Tsim Sha Tsui East, Kowloon, Hong Kong, 13 pp
Humphreys, M.A., 1970. A simple theoretical derivation of thermal comfort conditions, J.I.H.V.E., August.38, pp.95-98
Hou G., 2016. An investigation of thermal comfort and the use of indoor transitional space, PhD Thesis, Cardiff University
Höppe, P. (1999). The physiological equivalent temperature- a universal index of the biometeorological assessment of the thermal environment. International Journal of Biometeorology, 43, 71- 75
Jitkhajornwanich, K., Pitts, A. C., Malama, A., & Sharples, S. (1998). Thermal Comfort in Transitional Spaces in the Cool Season of Bangkok. ASHRAE Transactions, 104(Pt 1A), 1181-1193
Kamholz, J., & Storer L., 2009. Regional and historic standards of comfort. School of architecture, the University of Texas at AUSTIN
Kotopouleas A., Nikolopoulou M. (2016): "Thermal Comfort Conditions in Airport Terminals, Building and Environment, V.99
Kwong Q.J., Tang S.H. & Adam N.M., 2009. Thermal Comfort Evaluation of the Enclosed Transitional Space in Tropical Buildings: Subjective Response and Computational Fluid Dynamics Simulation. Journal of Applied Sciences, 9: 3480-3490. DOI: 10.3923/jas.2009.3480.3490
Liu J., Yao R., McCloy R., 2012. A method to weight three categories of adaptive thermal comfort, Energy and Buildings 47 (2012), pp. 312–320, https://doi.org/10.1016/j.enbuild.2011.12.007
Limb, M., 1992. Technical notes-an infiltration and ventilation glossary Air infiltration and ventilation center. p 36
Matzarakis, A; Rutz, F; Mayer, H., 2010. Modeling radiation fluxes in simple and complex environments: Basics of the RayMan model. International Journal of Biometeorol, 54, 131-139
Miura S., 1991. Study on thermal environment and energy consumption in underground shopping centres, Journal of Architectural Institute of Japan
McIntyre, D. A., 1980. Indoor climate. Essex, England: Applied Science Publishers LTD
McCartney, K.J., Nicol, F.J., 2002. Developing an adaptive control algorithm for Europe. Energy and Buildings 34(6), pp. 623–35
Mclure, W., Bartuska, T.,