بازآرایی مقاوم شبکه¬های توزیع به منظور بهبود انعطاف¬پذیری در حضور منابع انرژی تجدیدپذیر
محورهای موضوعی : مهندسی برق و کامپیوتر
مهسا چوبداری
1
,
محمود سمیعی مقدم
2
,
رضا داورزنی
3
,
آزیتا آذرفر
4
,
حسام الدین حسین پور
5
1 - گروه مهندسي برق، واحد شاهرود، دانشگاه آزاد اسلامی، شاهرود، ايران
2 - گروه مهندسي برق، واحد دامغان، دانشگاه آزاد اسلامی، دامغان، ايران
3 - گروه مهندسي برق، واحد شاهرود، دانشگاه آزاد اسلامی، شاهرود، ايران
4 - گروه مهندسي برق، واحد شاهرود، دانشگاه آزاد اسلامی، شاهرود، ايران
5 - گروه مهندسي برق، واحد شاهرود، دانشگاه آزاد اسلامی، شاهرود، ايران
کلید واژه: انرژی تجدیدپذیر, بازآرایی, بهینه¬سازی مقاوم, شبکه توزیع,
چکیده مقاله :
بازآرایی شبکههای توزیع هوشمند به عنوان یک استراتژی مقرونبهصرفه برای کاهش تلفات و انحراف ولتاژ، به ویژه در مواجهه با ادوات نوظهوری مانند سیستمهای ذخیرهسازی انرژی، مدیریت سمت تقاضا و منابع تولید پراکنده میباشد. مطالعات اخیر، اهداف بهینهسازی را گسترش داده است تا نه تنها کاهش تلفات سیستم توزیع، بلکه به حداقل رساندن تأمین برق از شبکه انتقال در پستهای توزیع را نیز شامل شود. این مقاله یک مدل بازآرایی مقاوم را معرفی میکند که از بهینهسازی مخروط مرتبه دوم دو مرحلهای استفاده میکند. منابع انرژی تجدیدپذیر و مدیریت تقاضا به همراه منابع تولید پراکنده مبتنی بر سوخت فسیلی مانند ژنراتورهای گاز و دیزل را پوشش میدهد. هدف این مدل بهینهسازی یک تابع چند هدفه است که تلفات، خرید برق در پستهای توزیع و هزینههای مرتبط با محدود کردن منابع انرژی تجدیدپذیر را کاهش میدهد. عملکرد مدل پیشنهادی در شبیهسازی شبکه 33 باس IEEE نشان میدهد که تلفات توان در مقایسه با وضعیت بدون مدیریت سمت تقاضا (معادل 0.71 مگاوات) تا 22.5% کاهش یافته است. مصرف انرژی خریداریشده از شبکه تا 19.5% کاهش یافته است (از 1.54 به 1.24 مگاوات ساعت). ولتاژ حداقل بهبود یافته است (افزایش 1.03% از 0.972 به 0.982 p.u). در سناریوی بهینهسازی مقاوم، کاهش 10% در تعداد خطوط بازشده نشاندهنده بهبود عملکرد در شرایط عدم قطعیت است. این نتایج نشاندهنده تأثیر قابلتوجه مدل پیشنهادی در بهینهسازی عملکرد شبکههای توزیع هوشمند و کاهش هزینهها و تلفات است.
Reconfiguring smart distribution networks is an economical strategy for reducing losses and voltage deviations, particularly in the face of emerging devices such as energy storage systems, demand-side management, and distributed generation sources. Recent studies have expanded optimization objectives to not only reduce distribution system losses but also minimize electricity procurement from the transmission network at distribution substations. This paper introduces a resilient reconfiguration model that uses a second-order cone programming optimization approach. It covers renewable energy sources, demand-side management, and fossil fuel-based distributed generation sources such as gas and diesel generators. The goal of this optimization model is to minimize a multi-objective function that reduces losses, electricity purchase at distribution substations, and costs associated with limiting renewable energy sources. The performance of the proposed model is validated through a simulation of the 33-bus IEEE network, showing that power losses have decreased by 22.5% (from 0.71 MW to 0.55 MW) compared to the case without demand-side management. The energy purchased from the grid has decreased by 19.5% (from 1.54 to 1.24 MWh). The minimum voltage has improved by 1.03% (from 0.972 p.u to 0.982 p.u). In the robust optimization scenario, there is a 10% reduction in the number of open lines, indicating improved performance under uncertainty conditions. These results highlight the significant impact of the proposed model in optimizing the performance of smart distribution networks and reducing costs and losses.
[1] P. S. Prasad and M. Sushama, “Distribution network reconfiguration and capacitor allocation in distribution system using discrete improved grey wolf optimization,” in Innovations in Electrical and Electronic Engineering. ICEEE 2022, S. Mekhilef, R. N. Shaw, and P. Siano, Eds., Lecture Notes in Electrical Engineering, vol. 894, Singapore: Springer, 2022, doi: 10.1007/978-981-19-1677-9_54.
[2] M. Hemmati, B. Mohammadi-Ivatloo, M. Abapour, and A. Anvari-Moghaddam, “Optimal chance-constrained scheduling of reconfigurable microgrids considering islanding operation constraints,” IEEE Syst. J., vol. 14, no. 4, pp. 5340–5349, Dec. 2020, doi: 10.1109/JSYST.2020.2964637.
[3] J. Shukla, B. K. Panigrahi, and P. K. Ray, “Stochastic reconfiguration of distribution system considering stability, correlated loads and renewable energy based DGs with varying penetration,” Sustain. Energy, Grids Netw., vol. 23, art. no. 100366, 2020, doi: 10.1016/j.segan.2020.100366.
[4] Y. Gao, W. Wang, J. Shi, and N. Yu, “Batch-constrained reinforcement learning for dynamic distribution network reconfiguration,” IEEE Trans. Smart Grid, vol. 11, no. 6, pp. 5357–5369, Nov. 2020, doi: 10.1109/TSG.2020.3005270.
[5] E. Kazemi-Robati and M. S. Sepasian, “Fast heuristic methods for harmonic minimization using distribution system reconfiguration,” Electr. Power Syst. Res., vol. 181, art. no. 106185, 2020, doi: 10.1016/j.epsr.2020.106185.
[6] S. Chen, Y. Yang, M. Qin, and Q. Xu, “Coordinated multiobjective optimization of the integrated energy distribution system considering network reconfiguration and the impact of price fluctuation in the gas market,” Int. J. Electr. Power Energy Syst., vol. 138, art. no. 107776, 2022, doi: 10.1016/j.ijepes.2022.107776.
[7] D. Yousri, S. B. Thanikanti, K. Balasubramanian, A. Osama, and A. Fathy, “Multi-objective grey wolf optimizer for optimal design of switching matrix for shaded PV array dynamic reconfiguration,” IEEE Access, vol. 8, pp. 159931–159946, 2020, doi: 10.1109/ACCESS.2020.3018722.
[8] Y. Qu, C. C. Liu, J. Xu, Y. Sun, S. Liao, and D. Ke, “A global optimum flow pattern for feeder reconfiguration to minimize power losses of unbalanced distribution systems,” Int. J. Electr. Power Energy Syst., vol. 131, art. no. 107071, 2021, doi: 10.1016/j.ijepes.2021.107071.
[9] M. Mahdavi, H. H. Alhelou, and M. R. Hesamzadeh, “An efficient stochastic reconfiguration model for distribution systems with uncertain loads,” IEEE Access, vol. 10, pp. 10640–10652, 2022, doi: 10.1109/ACCESS.2022.3144665.
[10] H. Karimianfard and H. Haghighat, “An initial-point strategy for optimizing distribution system reconfiguration,” Electr. Power Syst. Res., vol. 176, art. no. 105943, 2019, doi: 10.1016/j.epsr.2019.105943.
[11] Q. Shi, F. Li, J. Dong, M. Olama, X. Wang, C. Winstead, and T. Kuruganti, “Co-optimization of repairs and dynamic network reconfiguration for improved distribution system resilience,” Appl. Energy, vol. 318, 2022, doi: 10.1016/j.apenergy.2022.118245.
[12] S.-M. Razavi, H.-R. Momeni, M.-R. Haghifam, and S. Bolouki, “Multi-objective optimization of distribution networks via daily reconfiguration,” IEEE Trans. Power Deliv., vol. 37, no. 2, pp. 775–785, Apr. 2022, doi: 10.1109/TPWRD.2021.3070796.
[13] J. Xu, T. Zhang, Y. Du, W. Zhang, T. Yang, and J. Qiu, “Islanding and dynamic reconfiguration for resilience enhancement of active distribution systems,” Electr. Power Syst. Res., vol. 189, art. no. 106749, 2020, doi: 10.1016/j.epsr.2020.106749.
[14] J. Wang, W. Wang, H. Wang, and H. Zuo, “Dynamic reconfiguration of multiobjective distribution networks considering DG and EVs based on a novel LDBAS algorithm,” IEEE Access, vol. 8, pp. 216873–216893, 2020, doi: 10.1109/ACCESS.2020.3041398.
[15] Y. Song, Y. Zheng, T. Liu, S. Lei, and D. J. Hill, “A new formulation of distribution network reconfiguration for reducing the voltage volatility induced by distributed generation,” IEEE Trans. Power Syst., vol. 35, no. 1, pp. 496–507, Jan. 2020, doi: 10.1109/TPWRS.2019.2926317.
[16] H. Sekhavatmanesh and R. Cherkaoui, “A multi-step reconfiguration model for active distribution network restoration integrating DG start-up sequences,” IEEE Trans. Sustain. Energy, vol. 11, no. 4, pp. 2879–2888, Oct. 2020, doi: 10.1109/TSTE.2020.2980890.
[17] A. Azizivahed et al., “Energy management strategy in dynamic distribution network reconfiguration considering renewable energy resources and storage,” IEEE Trans. Sustain. Energy, vol. 11, no. 2, pp. 662–673, Apr. 2020, doi: 10.1109/TSTE.2019.2901429.
[18] S. Yin, J. Wang, and H. Gangammanavar, “Stochastic market operation for coordinated transmission and distribution systems,” IEEE Trans. Sustain. Energy, vol. 12, no. 4, pp. 1996–2007, Oct. 2021, doi: 10.1109/TSTE.2021.3076037.
[19] Q. Chen, W. Wang, H. Wang, J. Wu, X. Li, and J. Lan, “A social beetle swarm algorithm based on grey target decision-making for a multiobjective distribution network reconfiguration considering partition of time intervals,” IEEE Access, vol. 8, pp. 204987–205013, 2020, doi: 10.1109/ACCESS.2020.3036898.
[20] Z. Li, W. Wu, B. Zhang, and X. Tai, “Analytical reliability assessment method for complex distribution networks considering post-fault network reconfiguration,” IEEE Trans. Power Syst., vol. 35, no. 2, pp. 1457–1467, Mar. 2020, doi: 10.1109/TPWRS.2019.2936543.
[21] W. Huang, W. Zheng, and D. J. Hill, “Distribution network reconfiguration for short-term voltage stability enhancement: An efficient deep learning approach,” IEEE Trans. Smart Grid, vol. 12, no. 6, pp. 5385–5395, Nov. 2021, doi: 10.1109/TSG.2021.3097330.
[22] H. Wu, P. Dong, and M. Liu, “Optimization of network-load interaction with multi-time period flexible random fuzzy uncertain demand response,” IEEE Access, vol. 7, pp. 161630–161640, 2019, doi: 10.1109/ACCESS.2019.2940721.
[23] E. Kazemi-Robati, M. S. Sepasian, H. Hafezi, and H. Arasteh, “PV-hosting-capacity enhancement and power-quality improvement through multiobjective reconfiguration of harmonic-polluted distribution systems,” Int. J. Electr. Power Energy Syst., vol. 140, art. no. 107972, 2022, doi: 10.1016/j.ijepes.2022.107972.
[24] C. Wang, S. Lei, P. Ju, C. Chen, C. Peng, and Y. Hou, “MDP-based distribution network reconfiguration with renewable distributed generation: Approximate dynamic programming approach,” IEEE Trans. Smart Grid, vol. 11, no. 4, pp. 3620–3631, Jul. 2020, doi: 10.1109/TSG.2019.2963696.
[25] S. F. Santos, M. Gough, D. Z. Fitiwi, J. Pogeira, M. Shafie-khah, and J. P. S. Catalão, “Dynamic distribution system reconfiguration considering distributed renewable energy sources and energy storage systems,” IEEE Syst. J., 2021, doi: 10.1109/JSYST.2021.3135716.
[26] P. Harsh and D. Das, “Optimal coordination strategy of demand response and electric vehicle aggregators for the energy management of reconfigured grid-connected microgrid,” Renew. Sustain. Energy Rev., vol. 160, art. no. 112251, 2022, doi: 10.1016/j.rser.2022.112251.
[27] H. Zhou, H. Zhai, M. Yang, and Y. Lin, “Three-phase unbalanced distribution network dynamic reconfiguration: A distributionally robust approach,” IEEE Trans. Smart Grid, vol. 13, no. 3, pp. 2063–2074, May 2022, doi: 10.1109/TSG.2021.3139763.
[28] E. Kianmehr, S. Nikkhah, V. Vahidinasab, D. Giaouris, and P. C. Taylor, “A resilience-based architecture for joint distributed energy resources allocation and hourly network reconfiguration,” IEEE Trans. Ind. Inform., vol. 15, no. 10, pp. 5444–5455, Oct. 2019, doi: 10.1109/TII.2019.2901538.
[29] H. Gao et al., “Multi-objective dynamic reconfiguration for urban distribution network considering multi-level switching modes,” J. Mod. Power Syst. Clean Energy, vol. 10, no. 5, pp. 1241–1255, Sep. 2022, doi: 10.35833/MPCE.2020.000870.
[30] H. Karimianfard, M. R. Salehizadeh, and P. Siano, “Economic profit enhancement of a demand response aggregator through investment of large-scale energy storage systems,” CSEE J. Power Energy Syst., vol. 8, no. 5, pp. 1468–1476, Sep. 2022, doi: 10.17775/CSEEJPES.2021.02650.
[31] H. Karimianfard and H. Haghighat, “Generic resource allocation in distribution grid,” IEEE Trans. Power Syst., vol. 34, no. 1, pp. 810–813, Jan. 2019, doi: 10.1109/TPWRS.2018.2867170.
[32] B. Zeng and L. Zhao, “Solving two-stage robust optimization problems using a column-and-constraint generation method,” Oper. Res. Lett., vol. 41, pp. 457–461, 2013, doi: 10.1016/j.orl.2013.03.011.
[33] S. Dehghan, N. Amjady, and A. Kazemi, “Two-stage robust generation expansion planning: A mixed integer linear programming model,” IEEE Trans. Power Syst., vol. 29, pp. 584–597, 2014, doi: 10.1109/TPWRS.2013.2285359.
[34] Y. Guo and C. Zhao, “Islanding-aware robust energy management for microgrids,” IEEE Trans. Smart Grid, vol. 9, pp. 1301–1309, 2016, doi: 10.1109/TSG.2016.2541365.
[35] S. Shakerinia et al., “Optimal operation of microgrids with worst-case renewable energy outage: A mixed-integer bi-level model,” IEEE Access, vol. 11, pp. 59804–59815, 2023, doi: 10.1109/ACCESS.2023.3276045.
[36] M. Hematian et al., “Stochastic dynamic reconfiguration in smart distribution system considering demand-side management, energy storage system, renewable and fossil resources and electric vehicle,” J. Electr. Eng. Technol., vol. 18, no. 5, pp. 3429–3441, 2023, doi: 10.1007/s42835-023-01670-9.
[37] M. Hematiyan, M. Vahedi, M. Samiei Moghaddam, N. Salehi, and A. Azarfar, “Feasibility study of presenting a dynamic stochastic model based on mixed integer second-order conic programming to solve optimal distribution network reconfiguration in the presence of resources and demand-side management,” IJE, vol. 25, no. 3, pp. 1–21, 2022, doi: 10.1016/j.ijepes.2021.107331.
