مطالعه میزان تصفیه پذیری آب خاکستری با استفاده از جذب سطحی با نانوذرات آهن
محورهای موضوعی : علوم آب
سعید گواهی
1
,
ehsan derikvand
2
,
صایب خوشنواز
3
,
محسن سلیمانی بابرصاد
4
,
Iman Parseh
5
1 - دانشجو دکتری گروه عمران، واحد شوشتر، دانشگاه آزاد اسلامی، شوشتر، ایران
2 - Department of Water Science,
Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
3 -
4 - عضو هیات علمی گروه آبیاری دانشگاه آزاد اسلامی واحد شوشتر
5 - Behbahan Faculty of Medical Sciences, Behbahan, Iran
کلید واژه: آب اکسیژنه, اکسیداسیون, بیولوژیکی, تصفیه, خاکستری, فرابنفش,
چکیده مقاله :
در جوامع بشری، منابع بسیاری برای بازیافت وجود دارد که یکی از مهمترین آنها آبهای خاکستری است. این آبها که گاهاً به دلیل وجود ترکیبات آلی تجزیه ناپذیر نیاز به تصفیه با روشهای پیشرفته غیربیولوژیکی دارند، در این پژوهش با استفاده از نانوذرات اکسید آهن Fe3O4 تصفیه شدهاند. آب آلوده خروجی از فرآیندهای بیولوژیکی و اکسیداسیون شیمیایی، با غلظت اولیه COD، BOD، TKN و TP به ترتیب 170، 40،3.9 و0.4 میلیگرم بر لیتر، در معرض نانوذرات آهن قرار گرفت. نتایج نشان داد که برای حذف حداکثر آلایندهها، به1.2 گرم بر لیتر نانوذرات آهن نیاز است. با بهینهسازی شرایط، راندمان حذف COD، BOD، TKN و TP به ترتیب به 57، 36، 7.5 و60 درصد در pH=5 و زمان تماس 40 دقیقه رسید. بررسیها نشان داد که تغییرات pH تاثیر چندانی بر حذف BOD، فسفات و نیترات ندارد، در حالی که حذف COD در pH های پایین کارآمدتر است. همچنین، همبستگی بین حذف آلایندهها و مدل فروندلیخ به ترتیب 98.2،53.6 ،98.8 و 97.7 درصد بود. بر خلاف انتظار، مقدار حداکثر جذب تعادلی (qmax) در مدل لانگمیر برای همه آلایندهها به جز BOD منفی بدست آمد، که نشاندهنده عدم تطابق این مدل با فرآیند جذب است. در نهایت، با استفاده از اکسیداسیون شیمیایی UV/H2O2 پس از جذب سطحی با Fe3O4، راندمان حذف COD به بالای 90 درصد افزایش یافت. این مطالعه نشان داد که جذب سطحی به تنهایی برای دستیابی به استانداردهای تخلیه فاضلاب کافی نیست، اما ترکیب آن با اکسیداسیون شیمیایی میتواند این امر را امکانپذیر سازد.
Gray water, a valuable recycling resource, is often contaminated with non-degradable organic compounds, requiring advanced treatment. This study investigated the use of Fe3O4 iron oxide nanoparticles for surface adsorption of gray water from a Sequencing Batch Reactor (SBR) followed by UV/H2O2 chemical oxidation.The results showed that a dosage of 1.2 g/L iron nanoparticles was optimal for pollutant removal. Under optimized conditions, removal efficiencies for COD, BOD, TKN, and TP were 57%, 36%, 7.5%, and 60%, respectively. pH variations had minimal impact on BOD, phosphate, and nitrate removal, while COD removal was more effective at lower pH.The Freundlich isotherm better described the adsorption process for phosphate, nitrate, BOD, and COD compared to the Langmuir model. Combining surface adsorption with Fe3O4 and UV/H2O2 chemical oxidation achieved a COD removal efficiency exceeding 90%. This study demonstrates that surface adsorption alone may not meet wastewater discharge standards, but when combined with chemical oxidation, it can effectively treat gray water.
Ahila, K. G., Vasanthy, M., & Thamaraiselvi, C. (2018). Utilization and management of bioresources. In Utilization and Management of Bioresources (pp. 315-324). Springer. https://doi.org/10.1007/978-981-10-5349-8
Ali, A., Zafar, H., Zia, M., ul Haq, I., Phull, A. R., Ali, J. S., & Hussain, A. (2016). Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnology, Science and Applications, 9, 49-67. https://doi.org/10.2147/NSA.S99986
Alpat, S. K., Özbayrak, Ö., Alpat, Ş., & Akçay, H. (2008). The adsorption kinetics and removal of cationic dye, Toluidine Blue O, from aqueous solution with Turkish zeolite. Journal of hazardous materials, 151(1), 213-220
. Aragaw, T. A. (2020). Recovery of iron hydroxides from electro-coagulated sludge for adsorption removals of dye wastewater: Adsorption capacity and adsorbent characteristics. Surfaces and Interfaces, 18, 100439. https://doi.org/10.1016/j.surfin.2020.100439
AR Mesdaghi, N., AH, M., AA, M., & M Ali, M. (2011). Study of nitrate reduction from water using nanosized iron. Booker, N., Keir, D., Priestley, A., Ritchie, C., Sudarmana, D., & Woods, M. (1991). Sewage clarification with magnetite particles. Water Science and Technology, 23(7-9), 1703-1712
. Borghi, C. C., Fabbri, M., Fiorini, M., Mancini, M., & Ribani, P. L. (2011). Magnetic removal of surfactants from wastewater using micrometric iron oxide powders. Separation and Purification Technology, 83, 180-188
. Cai, Z., Sun, Y., Liu, W., Pan, F., Sun, P., & Fu, J. (2017). An overview of nanomaterials applied for removing dyes from wastewater. Environmental Science and Pollution Research, 24, 15882-15904
. Consultants, I. (2012). Code. American Water Works Association (AWWA). Fire Flow Water Consumption in Sprinklered and Unsprinklered Buildings, An Assessment of Community Impacts. In: Philadelphia, Springer Science & Business Media.
de Latour, C., & Kolm, H. H. (1976). High‐Gradient Magnetic Separation A Water‐Treatment Alternative. Journal‐American Water Works Association, 68(6), 325-327
. de Vicente, I., Merino-Martos, A., Cruz-Pizarro, L., & de Vicente, J. (2010). On the use of magnetic nano and microparticles for lake restoration. Journal of hazardous materials, 181(1-3), 375-381
. Dinali, R., Ebrahiminezhad, A., Manley-Harris, M., Ghasemi, Y., & Berenjian, A. (2017). Iron oxide nanoparticles in modern microbiology and biotechnology. Critical Reviews in Microbiology, 43, 493-507. https://doi.org/10.1080/1040841X.2016.1267708
Drenkova-Tuhtan, A., Mandel, K., Paulus, A., Meyer, C., Hutter, F., Gellermann, C., Sextl, G., Franzreb, M., & Steinmetz, H. (2013). Phosphate recovery from wastewater using engineered superparamagnetic particles modified with layered double hydroxide ion exchangers. Water research, 47(15), 5670-5677
. Gharloghi, M., Yazdanbakhsh, A., Eslami, A., & Aghayani, E. (2016). Efficiency of iron oxide nanoparticles in advanced treatment of secondary effluent of municipal wastewater treatment plant. Journal of Mazandaran University of Medical Sciences, 26(135), 130-143
. Giakisikli, G., & Anthemidis, A. N. (2013). Magnetic materials as sorbents for metal/metalloid preconcentration and/or separation. A review. Analytica chimica acta, 789, 1-16
. Guerra, F. D., Attia, M. F., Whitehead, D. C., & Alexis, F. (2018). Nanotechnology for environmental remediation: Materials and applications. Molecules, 23. https://doi.org/10.3390/molecules23071760
Hatt, B. E., Fletcher, T. D., & Deletic, A. (2007). Treatment performance of gravel filter media: Implications for design and application of stormwater infiltration systems. Water research, 41(12), 2513-2524
. Hlongwane, G. N., Sekoai, P. T., Meyyappan, M., & Moothi, K. (2019). Simultaneous removal of pollutants from water using nanoparticles: A shift from single pollutant control to multiple pollutant control. Science of the Total Environment, 656, 808-833
. Kakavandi B, Jafari AJ, Kalantary RR,Nasseri S, Ameri A, Esrafily A. Synthesis and properties of Fe3O4-activated carbon magnetic nanoparticles for removal of aniline from aqueous solution: equilibrium, kinetic and thermodynamic studies. Iranian J Environ Health Sci Eng 2013; 10(1): 10-19
. Kallel, M., Belaid, C., Mechichi, T., Ksibi, M., & Elleuch, B. (2009). Removal of organic load and phenolic compounds from olive mill wastewater by Fenton oxidation with zero-valent iron. Chemical Engineering Journal, 150(2-3), 391-395
. Lakshmanan, R., Sanchez-Dominguez, M., Matutes-Aquino, J. A., Wennmalm, S., & Kuttuva Rajarao, G. (2014). Removal of total organic carbon from sewage wastewater using poly (ethylenimine)-functionalized magnetic nanoparticles. Langmuir, 30(4), 1036-1044
. Liu, H., Peng, S., Shu, L., Chen, T., Bao, T., & Frost, R. L. (2013). Effect of Fe3O4 addition on removal of ammonium by zeolite NaA. Journal of colloid and interface science, 390(1), 204-210
. Lu, A. H., Salabas, E. e. L., & Schüth, F. (2007). Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition, 46(8), 1222-1244
. Marcelo, L. R., de Gois, J. S., da Silva, A. A., & Cesar, D. V. (2020). Synthesis of iron-based magnetic nanocomposites and applications in adsorption processes for water treatment: A review. Environmental Chemistry Letters, 19, 1229-1274. https://doi.org/10.1007/s10311-020-01134-2
Martinez-Boubeta, C., & Simeonidis, K. (2018). Magnetic nanoparticles for water purification. In Nanoscale Materials for Water Purification (pp. 521-552). Elsevier. https://doi.org/10.1016/B978-0-12-813926-4.00026-4
Mohamadiun, M., Dahrazma, B., Saghravani, S. F., & Khodadadi Darban, A. (2018). Removal of cadmium from contaminated soil using iron (III) oxide nanoparticles stabilized with polyacrylic acid. Journal of Environmental Engineering and Landscape Management, 26, 98-106. https://doi.org/10.3846/16486897.2017.1364645
Mohapatra, M., & Anand, S. (2011). Synthesis and applications of nano-structured iron oxides/hydroxides – a review. International Journal of Engineering Science and Technology, 2, 127-146. https://doi.org/10.4314/ijest.v2i8.63846
Palit, S. (2018). Application of nanotechnology in water treatment, wastewater treatment and other domains of environmental engineering science - a broad scientific perspective and critical review. In Nanotechnology for Sustainable Water Resources (pp. 1-39). Wiley. https://doi.org/10.1002/9781119323655.ch1
Predescu, A. M., Matei, E., Berbecaru, A. C., Pantilimon, C., Drăgan, C., Vidu, R., Predescu, C., & Kuncser, V. (2018). Synthesis and characterization of dextran-coated iron oxide nanoparticles. Royal Society open science, 5(3), 171525
. Rahmani, A. R., Ghafari, H. R., Samadi, M. T., & Zarabi, M. (2011). Synthesis of zero valent iron nanoparticles (nzvi) and its efficiency in arsenic removal from aqueous solutions. Water Wastewater, 1, 35-41
. Rand, M., Greenberg, A., & Taras, M. (1976). Standard methods for the examination of water and wastewater: Prepared and published jointly by American Public Health Association. American Water Works Association, and Water Pollution Control Federation
. Renu, Agarwal, M., & Singh, K. (2017). Heavy metal removal from wastewater using various adsorbents: A review. Journal of Water Reuse and Desalination, 7, 387-419. https://doi.org/10.2166/wrd.2016.104
Rima, J., Aoun, E., Hanna, K., & Li, Q. (2005). Degradation of phenol, into mineral compounds, in aqueous solutions using zero-valent iron powder (ZVIP). Journal de Physique IV (Proceedings), Robinson, P., Dunnill, P., & Lilly, M. (1971). Porous glass as a solid support for immobilisation or affinity chromatography of enzymes. Biochimica et Biophysica Acta (BBA)-Enzymology, 242(3), 659-661
. Sharma, M., Kalita, P., Senapati, K. K., & Garg, A. (2018). Study on magnetic materials for removal of water pollutants. In Emerging Pollutants - Some Strategies for Quality Preservation of Our Environment (pp. 61-78). IntechOpen. https://doi.org/10.5772/intechopen.75700
Shojaei, S., Khammarnia, S., Shojaei, S., & Sasani, M. (2017). Removal of reactive Red 198 by nanoparticle zero valent iron in the presence of hydrogen peroxide. Journal of Water and Environmental Nanotechnology, 2, 129-135. https://doi.org/10.22090/jwent.2017.02.008
Zazouli, M. A., Belarak, D., Karimnezhad, F., & Khosravi, F. (2014). Removal of fluoride from aqueous solution by using of adsorption onto modified Lemna minor: Adsorption isotherm and kinetics study. Journal of Mazandaran
University of Medical Sciences, 23(109), 195-204. Zhang, G.-S., Qu, J.-H., Liu, H.-J., Liu, R.-P., & Li, G.-T. (2007). Removal mechanism of As (III) by a novel Fe− Mn binary oxide adsorbent: oxidation and sorption. Environmental Science & Technology, 41(13), 4613-4619
. Zhang, J., Lin, S., Han, M., Su, Q., Xia, L., & Hui, Z. (2020). Adsorption properties of magnetic magnetite nanoparticle for coexistent Cr (VI) and Cu (II) in mixed solution. Water, 12(2), 446
. Xu, J., Ma, Q., Feng, W., Zhang, X., Lin, Q., You, C., & Wang, X. (2022). Removal of methyl orange from water by Fenton oxidation of magnetic coconut-clothed biochar. RSC advances, 12(38), 24439-24446
. Xu, P., Zeng, G. M., Huang, D. L., Feng, C. L., Hu, S., Zhao, M. H., Lai, C., Wei, Z., Huang, C., Xie, G. X., & Liu, Z. F. (2012). Use of iron oxide nanomaterials in wastewater treatment: A review. Science of the Total Environment, 424, 1-10. https://doi.org/10.1016/j.scitotenv.2012.02.023