بررسی کارایی اکسید گرافن در جذب سطحی 2-کلروفنل از محلولهای آبی به عنوان یک آلاینده محیط زیست
محورهای موضوعی : ارزیابی خطرات آلاینده ها بر روی محیط زیست
1 - دانشیار گروه شیمی، واحد اهر، دانشگاه آزاد اسلامی، اهر، ایران
کلید واژه: ۲-کلروفنل, جذب سطحی, اکسید گرافن, پارامترهای عملیاتی,
چکیده مقاله :
در این مقاله، از اکسید گرافن برای حذف ۲-کلروفنل از محلولهای آبی به روش جذب سطحی استفاده شد. به این منظور اثر پارامترهای مختلف از جمله غلظت اولیه ۲-کلروفنل، زمان تماس، pH اولیه محلول و مقدار جاذب بر روی حذف آن مطالعه شد. نتایج نشان داد که فرایند جذب سطحی در ۵۰ دقیقه به تعادل میرسد و مقدار حذف ۲-کلروفنل با افزایش مقدار جاذب ابتدا افزایش و سپس کاهش مییابد. از طرفی با افزایش غلظت اولیه ۲-کلروفنل و pH، درصد حذف ۲-کلروفنل کاهش یافت. مطابق نتایجg/L 3/0 از اکسید گرافن قادر به حذف %76/78 از ۲-کلروفنل در غلظت اولیه mg/L 100 و در 2pH = است. بنابراین اکسید گرافن جاذب پرقدرتی برای حذف ترکیب سمی ۲- کلروفنل از محیطهای آبی میباشد.
The purpose of the present research was to evaluate the potential of graphene oxide as an adsorbent for removing 2-chlorophenol (2-CP) from aqueous solutions. For this purpose, the effects of various parameters, including the initial concentration of 2-CP, contact time, initial pH, and adsorbent dosage, were examined. The results showed that 2-CP adsorption reaches equilibrium within 50 min. An increase in 2-CP concentration and pH leads to a decrease in 2-CP removal efficiency. Additionally, increasing the adsorbent dosage initially enhanced the removal percentage of 2-CP, but further increases led to a decrease. Based on the findings, 0.3 g/L of graphene oxide can remove 78.76% of 2-CP at an initial concentration of 100 mg/L and pH of 2. Thus, graphene oxide is an effective adsorbent for removing 2-CP as a toxic compound from aqueous solutions.
[1] Zafari, S.H., 2024, Removal of p-nitrophenol from aqueous environments by UV/S2O82- process in a continuous photoreactor: Optimization by Taguchi method, Environmental Pollution and Sustainable Urban Development, 1(1), 33. (in Persian)
[2] Eskandarloo, H., 2024, A review of new methods of removing environmental pollutants: Photolysis and UV/H2O2 processes, Environmental Pollution and Sustainable Urban Development, 1(1), 1. (in Persian)
[3] Jankowska, K., Su, Z., Zdarta, J., Skiadas, I.V., Woodley, J.M. , Pinelo, M., 2024, High performance removal of chlorophenols from an aqueous solution using an enzymatic membrane bioreactor, Environmental Pollution, 357, 124348.
[4] Ge, T., Han, J., Qi, Y., Gu, X., Ma, L., Zhang, C., Naeem, S. , Huang, D., 2017, The toxic effects of chlorophenols and associated mechanisms in fish, Aquatic Toxicology, 184, 78.
[5] Zhang, W., Ding, L., Luo, J., Jaffrin, M.Y. , Tang, B., 2016, Membrane fouling in photocatalytic membrane reactors (PMRs) for water and wastewater treatment: A critical review, Chemical Engineering Journal, 302, 446.
[6] Mohammad, A.T., Al-Obaidi, M.A., Hameed, E.M., Basheer, B.N., Mujtaba, I.M., 2020, Modelling the chlorophenol removal from wastewater via reverse osmosis process using a multilayer artificial neural network with genetic algorithm, Journal of Water Process Engineering, 33, 100993.
[7] Sharma, S., Mukhopadhyay, M., Murthy, Z.V.P., 2013, Treatment of chlorophenols from wastewaters by advanced oxidation processes, Separation & Purification Reviews, 42, 263.
[8] Nagata, Y., Nakagawa, M., Okuno, H., Mizukoshi, Y., Yim, B. , Maeda, Y., 2000, Sonochemical degradation of chlorophenols in water, Ultrasonics Sonochemistry, 7, 115.
[9] Zhao, Z., Zhang, J., Yao, J. , You, S., 2022, Electrochemical removal of 4-chlorophenol in water using a porous Magnéli-phase (Ti4O7) electrode, Environmental Research, 210, 113004.
[10] Ganjidoust, H., Tatsumi, K., Wada, S., Kawase, M., 1996, Role of peroxidase and chitosan in removing chlorophenols from aqueous solution, Water Science and Technology, 34, 151.
[11] Abd Razak, N., Ainirazali, N., Abdullah, N., 2021, Removal of 2-chlorophenol using pomelo (Citrus Maxima) albedo as a new low cost adsorbent, Materials Today: Proceedings, 41, 43.
[12] Garba, Z.N., Zhou, W., Lawan, I., Xiao, W., Zhang, M., Wang, L., Chen, L. , Yuan, Z., 2019, An overview of chlorophenols as contaminants and their removal from wastewater by adsorption: A review, Journal of Environmental Management, 241, 59.
[13] Ioannou, Z., Simitzis, J., 2009, Adsorption kinetics of phenol and 3-nitrophenol from aqueous solutions on conventional and novel carbons, Journal of Hazardous Materials, 171, 954.
[14] Tseng, R.L., Wu, K.T., Wu, F.C. , Juang, R.S., 2010, Kinetic studies on the adsorption of phenol, 4-chlorophenol, and 2,4-dichlorophenol from water using activated carbons, Journal of Environmental Management, 91, 2208.
[15] Damjanović, L., Rakić, V., Rac, V., Stošić, D., Auroux, A., 2010, The investigation of phenol removal from aqueous solutions by zeolites as solid adsorbents, Journal of Hazardous Materials, 184, 477.
[16] Froehner, S., Martins, R.F., Furukawa, W., Errera, M.R., 2009, Water remediation by adsorption of phenol onto hydrophobic modified clay, Water, Air, and Soil Pollution, 199, 107.
[17] Zhou, S., Zhang, C., Hu, X., Wang, Y., Xu, R., Xia, C., Zhang, H., Song, Z., 2014, Catalytic wet peroxide oxidation of 4-chlorophenol over Al-Fe-, Al-Cu-, and Al-Fe-Cu-pillared clays: Sensitivity, kinetics and mechanism, Applied Clay Science, 95, 275.
[18] Zhou, L.C., Meng, X.G., Fu, J.W., Yang, Y.C., Yang, P., Mi, C., 2014, Highly efficient adsorption of chlorophenols onto chemically modified chitosan, Applied Surface Science, 292, 735.
[19] Zhou, L.C., Meng, X.G., Li, J.M., Hu, W., Liu, B., Du, J., 2012, Kinetics and thermodynamics of adsorption of chlorophenols onto β-cyclodextrin modified chitosan, Acta Physico-Chimica Sinica, 28, 1615.
[20] Kurniawati, D., Sari, T.K., Adella, F., Sy, S., 2021, Effect of contact time adsorption of rhodamine B, methyl orange and methylene blue colours on langsat shell with batch methods, Journal of Physics: Conference Series, 1788, 012008.
[21] Sharma, P., Kaur, H., 2011, Sugarcane bagasse for the removal of erythrosin B and methylene blue from aqueous waste, Applied Water Science, 1, 135.
[22] Tazik, M., Dehghani, M.H., Yaghmaeian, K., Nazmara, S., Salari, M., Mahvi, A.H., Nasseri, S., Soleimani, H. , Karri, R.R., 2023, 4-Chlorophenol adsorption from water solutions by activated carbon functionalized with amine groups: Response surface method and artificial neural networks, Scientific Reports, 13, 7831.
[23] Mondal, N.K., Chakraborty, S., 2020, Adsorption of Cr (VI) from aqueous solution on graphene oxide (GO) prepared from graphite: Equilibrium, kinetic and thermodynamic studies, Applied Water Science, 10, 61.