تحلیل خرپای دوبعدی با هوش مصنوعی
محورهای موضوعی : مجله فناوری اطلاعات در طراحی مهندسیسبحان براتی 1 , جواد علامتیان 2
1 - گروه مهندسی عمران، واحد مشهد، دانشگاه آزاد اسلامی، مشهد، ایران
2 - گروه مهندسی عمران، واحد مشهد، دانشگاه آزاد اسلامی، مشهد، ایران
کلید واژه: هوش مصنوعی, خرپا دوبعدی, شبکه عصبی عمیق,
چکیده مقاله :
برای سازه ها با درجات آزادی زیاد، نرمافزارهای سنتی اجزا محدود، که مبتنی بر تقسیمبندی دامنه مسئله به جزءهای کوچکتر هستند، به دلیل صرف زمان زیاد، کارایی کمتری دارند. به همین دلیل، مهندسین به استفاده از الگوریتمهای هوش مصنوعی مبتنی بر طبیعت روی آوردهاند که توانایی یادگیری الگوهای پیچیده از دادهها را دارند.یکی از این روشها، استفاده از شبکههای عصبی عمیق است. این شبکهها با داشتن ساختار لایهای و قابلیت یادگیری از دادههای ورودی، میتوانند رفتار سیستمها را مدلسازی کنند. ابتدا شبکه عصبی عمیق با استفاده از دادههای تجربی آموزش داده میشود و پس از آن به پیش بینی داده های جدید می پردازد. با این حال، چالشهایی همچون نیاز به دادههای آموزشی گسترده و مناسب، تضمین دقت مدل و تفسیرپذیری نتایج همچنان وجود دارند. برای غلبه بر این چالشها، باید تحقیقات بیشتری در زمینه بهینهسازی ساختار شبکهها، تکنیکهای پیشپردازش دادهها و توسعه روشهای ترکیبی در هوش مصنوعی صورت گیرد. در این پژوهش، از شبکه عصبی عمیق برای تخمین تغییر مکانهای یک خرپای دوعضوی بر اساس دادههای گذشته استفاده میشود، که نتایج حاصل از این پژوهش، نشان دهنده ی تاثیر بسیار زیاد معماری شبکه در مورد این مسئله هست.
For structures with many degrees of freedom, traditional finite element software, which is based on dividing the problem domain into smaller elements, has become less efficient due to the extensive time required. As a result, engineers have turned to nature-inspired artificial intelligence algorithms, which possess the ability to learn complex patterns from data. One of these methods is the use of deep neural networks. These networks, with their layered structure and ability to learn from input data, can model system behaviors. Initially, the deep neural network is trained using empirical data, and then it predicts new data. However, challenges such as the need for extensive and suitable training data, ensuring model accuracy, and the interpretability of results still persist. To overcome these challenges, further research is required in optimizing network structures, data preprocessing techniques, and developing hybrid methods in artificial intelligence. In this study, a deep neural network is used to estimate the displacements of a two-member truss based on past data. The results from this study demonstrate the significant impact of network architecture on this problem.
1 . اسماعیلی،م. باد پی،ا. "مرجع کاربردی یادگیری ژرف با Tensor Flow و Keras"، انتشارات آتی نگر، 1402.
2. J. Naranjo-P´erez, M. Infantes, J. Fernando Jim´enez-Alonso, A. S´aez. A collaborative machine learning-optimization algorithm to improve the finite element model updating of civil engineering structures. Engineering Structures 225 (2020) 111327. https://doi.org/10.1016/j.engstruct.2020.111327
3. F. K.J. Jawad, C. Ozturk, W. Dansheng, M. Mahmood,O. Al-Azzawi, A. Al Jemely. Sizing and layout optimization of truss structures with artificial bee colony algorithm. Structures 30(2021) 546-559. https://doi.org/10.1016/j.istruc.2021.01.016
4. A. Gienger, S. Schaut, O. Sawodny, C. Tarin. Modular Distributed Fault Diagnosis for Adaptive Structures using Local Models. IFAC-PapersOnLine Volume 53, Issue 2, 2020, Pages 13631-13637. https://www.sciencedirect.com/journal/ifac-papersonline
5. B. Etaati , M. Neshat, A. Abdollahi Dehkordi , N. Salami Pargoo ,M. El-Abd , A. Sadollah , A. H. Gandomi. Shape and sizing optimisation of space truss structures using a new cooperative coevolutionary-based algorithm. Results in Engineering 21 (2024) 101859. https://doi.org/10.1016/j.rineng.2024.101859
6. N. Khodadadi , A. Özyüksel Çiftçioğlu , S. Mirjalili , A. Nanni. A comparison performance analysis of eight meta-heuristic algorithms for optimal design of truss structures with static constraints. Decision Analytics Journal 8 (2023) 100266. https://doi.org/10.1016/j.dajour.2023.100266
7. T. Vu-Huu, Sy Pham-Van, Q-Hoan Pham, T. Cuong-Le. An improved bat algorithms for optimization design of truss
structures. Structures Volume 47, January 2023, Pages 2240-2258. https://www.sciencedirect.com/journal/structures 8. M.Z. Naser. Fire resistance evaluation through artificial intelligence - A case for timber structures. Fire Safety Journal Volume 105, April 2019, Pages 1-18. https://www.sciencedirect.com/journal/fire-safety-journal
9. F.Ferreira, R. Shamass, V. Limbachiya, K. Daniel Tsavdaridis, C. Humberto Martins. Lateral–torsional buckling resistance prediction model for steel cellular beams generated by Artificial Neural Networks (ANN). Thin-Walled Structures Volume 170, January 2022, 108592 https://www.sciencedirect.com/journal/thin-walled-structures
10. H. Chen, Y. Liu, Y. Huang, J. Huang, L. Caisong, Z. Guo. Maximum displacement prediction model for steel beams with hexagonal web openings under impact loading based on artificial neural networks. Engineering Applications of Artificial Intelligence Volume 136, Part A, October 2024, 108932. https://www.sciencedirect.com/journal/engineering-applications-of-artificial-intelligence
11. S.K. Kamane, N.K. Patil, B.R. Patagundi. Use of artificial neural network to predict the bending behavior of steel I beam externally attached with FRP sheets. Materials Today: Proceedings Volume 39, Part 1, 2021, Pages 17-21. https://www.sciencedirect.com/journal/materials-today-proceedings/vol/39/part/P1