سنتز و بررسی خواص الکتروشیمیایی اکسید آنتروپی بالا (FeVCrMnNiZn)_3 O_4 بهعنوان آند در باتری لیتیم-یون
محورهای موضوعی : روش ها و فرآیندهای نوین در تولیدمحمدرضا اسماعیلی 1 , فرزاد سلیمانی 2
1 - دانشجوی دکتری، دانشکده مهندسی و علم مواد، دانشگاه صنعتی شریف، تهران، ایران
2 - استادیار، دانشکده مهندسی متالورژی، دانشگاه پیام نور، تهران، ایران
کلید واژه: باتری لیتیم- یون اکسید با آنتروپی بالا روش هیدروترمال ساختار اسپینل,
چکیده مقاله :
اکسیدهای با آنتروپی بالا با ترکیب فلزات واسطه (HEO-TM) به دلیل توانایی انجام واکنشهای اکسایش-کاهش چند الکترونی، گزینهای بالقوه برای استفاده بهعنوان آند در باتریهای لیتیوم-یونی معرفی شدهاند. در این پژوهش، از روش هیدروترمال برای سنتز اکسید با آنتروپی بالای (FeVCrMnNiZn)3O4 استفاده شده است. در ادامه، نمونه سنتز شده در دمای 900 درجه سانتیگراد کلسینه شده است. آنالیز XRD تشکیل ساختار تکفاز اسپینل را به خوبی نشان داده است. نتایج آزمونهای الکتروشیمیایی ظرفیت اولیه 773 میلیآمپر ساعت بر گرم را ثبت کردهاند که پس از گذشت 200 چرخه در اثر واکنشهای تبدیل به مقدار 1046 میلیآمپر ساعت بر گرم رسیده است. همچنین، آزمون قابلیت نرخپذیری حاکی از بازیابی ساختاری فوقالعاده این الکترود است. ضریب نفوذ یون لیتیوم در ساختار این ماده الکترودی از طریق طیفسنجی امپدانس الکترومغناطیسی محاسبه و مشخص شده است که با گذشت هر چرخه در اثر تثبیت لایه SEI ضریب نفوذ افزایش مییابد. بهطوریکه ضریب نفوذ یون لیتیوم از 05/1 در نمونه تازه به 37/13 در چرخه 200 رسیده است.
High-entropy oxides containing transition metals (HEO-TM) have been identified as promising anode materials for lithium-ion batteries, owing to their capacity for multi-electron redox reactions. In this study, the (FeVCrMnNiZn)3O4 high-entropy oxide was synthesized via a hydrothermal methodp, followed by calcination at 900°C. XRD analysis confirmed the successful formation of a single-phase spinel structure. Electrochemical performance tests revealed an initial capacity of 773 mAh/g, which increased to 1046 mAh/g after 200 cycles due to conversion reactions. Additionally, rate capability tests demonstrated exceptional structural recovery of this electrode. The lithium-ion diffusion coefficient in this electrode material was calculated using electrochemical impedance spectroscopy (EIS), showing an increase with each cycle due to the stabilization of the SEI layer. Specifically, the lithium-ion diffusion coefficient improved from 1.05 × 10⁻¹⁴ cm² s⁻¹ in the fresh sample to 13.37 × 10⁻¹⁴ cm² s⁻¹ after 200 cycles.
[1] D. Xiong, X. Li, Z. Bai & S. Lu, "Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage", Small, vol. 14, no. 17, p. 1703419, 2018.
[2] B. Scrosati, K. Abraham, W. A. van Schalkwijk & J. Hassoun, "Lithium batteries: advanced technologies and applications", John Wiley & Sons, 2013.
[3] J. B. Goodenough & K. S. Park, "The Li-ion rechargeable battery: a perspective", Journal of the American Chemical Society, vol. 135, no. 4, pp. 1167-1176, 2013.
[4] S. Chu, Y. Cui & N. Liu, "The path towards sustainable energy", Nature materials, vol. 16, no. 1, pp. 16-22, 2017.
[5] M. Li, T. Liu, X. Bi, Zh. Chen, K. Amine, Ch. Zhong & J. Lu "Cationic and anionic redox in lithium-ion based batteries", Chemical Society Reviews, vol. 49, no. 6, pp. 1688-1705, 2020.
[6] G. M. Huang, C. W. Huang, N. Kumar, C. Y. Huang, T. Y. Tseng & W. W. Wu, "In situ TEM investigation of electron beam-induced ultrafast chemical lithiation for charging", Journal of Materials Chemistry A, vol. 8, no. 2, pp. 648-655, 2020.
[7] F. X. Ma, H. Hu, H. B. Wu, Ch. Y. Xu, Z. Xu, L. Zhen, X. W. D. Lou, "Formation of Uniform Fe3O4 Hollow Spheres Organized by Ultrathin Nanosheets and Their Excellent Lithium Storage Properties", Advanced Materials (Deerfield Beach, Fla.), vol. 27, no. 27, pp. 4097-4101, 2015.
[8] Y. Gao, L. Yin, S. J. Kim, H. Yang, I. Jeon, J. P. Kim, S. Y. Jeong, H. W. Lee, Ch. R. Cho, "Enhanced lithium storage by ZnFe2O4 nanofibers as anode materials for lithium-ion battery", Electrochimica Acta, vol. 296, pp. 565-574, 2019.
[9] S. Xu, C. M. Hessel, H. Ren, R.Yu, Quan Jin, M. Yang, H. Zhaoc & D. Wang, "α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention", Energy & environmental science, vol. 7, no. 2, pp. 632-637, 2014.
[10] N. Nitta, F. Wu, J. T. Lee & G. Yushin, "Li-ion battery materials: present and future", Materials today, vol. 18, no. 5, pp. 252-264, 2015.
[11] X. Li, W. Zhang, K. Lv, J. Liu & A. Bayaguud, "Research progress on high-entropy oxides as advanced anode, cathode, and solid-electrolyte materials for lithium-ion batteries", Journal of Power Sources, vol. 620, p. 235259, 2024.
[12] R. Guo, Y. Yang, Ch. Zhao & F. Hua, "The Role of High‐Entropy Materials in Lithium‐Based Rechargeable Batteries", Advanced Functional Materials, vol. 34, no. 18, p. 2313168, 2024.
[13] B. Ran, H. Li, R. Cheng, Z. Yang, Y, Zhong, Y. Qin, Ch. Yang & Ch. Fu, "High‐Entropy Oxides for Rechargeable Batteries", Advanced Science, p. 2401034, 2024.
[14] S. Ma, M. Jiang, P. Tao, Ch.Song, J. Wu, J. Wang, T. Deng & W. Shang, Temperature effect and thermal impact in lithium-ion batteries: A review", Progress in Natural Science: Materials International, vol. 28, no. 6, pp. 653-666, 2018.
[15] A. Sarkar, L. Velasco, D. Wang, Q. Wang, G. Talasila, L. de Biasi, Ch. Kübel, T. Brezesinski, S. S. Bhattacharya, H. Hahn & B. Breitung, "High entropy oxides for reversible energy storage", Nature communications, vol. 9, no. 1, p. 3400, 2018.
[16] C. Y. Huang, C. W. Huang, M. C. Wu, J. Patra, T. X. Nguyen, M. T. Chang, O. Clemens, J. M. Ting, J. Li, J. K. Chang & W. W. Wu, "Atomic-scale investigation of Lithiation/Delithiation mechanism in High-entropy spinel oxide with superior electrochemical performance", Chemical Engineering Journal, vol. 420, p. 129838, 2021.
[17] D. Wang et al., Sh. Jiang, Ch. Duan, J. Mao, Y. Dong, K. Dong, Zh. Wang, Sh. Luo, Y. Liu & X. Qi”,Spinel-structured high entropy oxide (FeCoNiCrMn)3O4 as anode towards superior lithium storage performance", Journal of Alloys and Compounds, vol. 844, p. 156158, 2020.
[18] K. Karami, S. Amjad-Iranagh, K. Dehghani, M. H. Saznaghi & R. Riahifar, "Using spinel (CrNiFeMnZn)3O4 nanoparticles HEOs as free cobalt anode in ion-lithium batteries", Journal of Energy Storage, vol. 101, p. 113823, 2024.
[19] L. Oroszová, D. Csík ,G. Baranová, G. Bortel, R. Džunda, L. Temleitner, M. Hagarová, B. Breitung & K.Saksl, "Utilizing High-Capacity Spinel-Structured High-Entropy Oxide (CrMnFeCoCu)3O4 as a Graphite Alternative in Lithium-Ion Batteries", Crystals, vol. 14, no. 3, p. 218, 2024.
[20] D. Bérardan, S. Franger, D. Dragoe, A. K. Meena & N. Dragoe, "Colossal dielectric constant in high entropy oxides", physica status solidi (RRL)–Rapid Research Letters, vol. 10, no. 4, pp. 328-333, 2016.
[21] H. Li, Y. Zhou, Zh. Liang, H. Ning, X. Fu, Zh. Xu, T. Qiu, W. Xu, R. Yao, & J. Peng, "High-entropy oxides: advanced research on electrical properties", Coatings, vol. 11, no. 6, p. 628, 2021.
[22] M. Fracchia, M. Coduri, P. Ghigna & U. Anselmi-Tamburini, "Phase stability of high entropy oxides: A critical review", Journal of the European Ceramic Society, vol. 44, no. 2, pp. 585-594, 2024.
[23] H. Leng, P. Zhang, J. Wu, T. Xu, H. Deng, P. Yang, Sh. Wang, J. Qiu, Zh. Wu & Sh. Li, "The elemental pegging effect in locally ordered nanocrystallites of high-entropy oxide enables superior lithium storage", Nanoscale, vol. 15, no. 47, pp. 19139-19147, 2023.
[24] J. Ma & C. Huang, "High entropy energy storage materials: Synthesis and application", Journal of Energy Storage, vol. 66, p. 107419, 2023.
[25] S. Schweidler, M. Botros, F. Strauss, Q. Wang, Y. Ma, L. Velasco, G. Cadilha Marques, A. Sarkar, Ch. Kübel, H. Hahn, J. Aghassi-Hagmann, T. Brezesinski & B. Breitung, "High-entropy materials for energy and electronic applications", Nature Reviews Materials, vol. 9, no. 4, pp. 266-281, 2024.
[26] X. Han, D. Li, J. Zhou, Y. Zheng, L. Kong, L. Lid & F.Yan, "Electrospun single-phase spinel magnetic high entropy oxide nanoparticles via low-temperature ambient annealing", Nanoscale Advances, vol. 5, no. 11, pp. 3075-3083, 2023.
[27] Y. Du, F. Yang, J. Li, M. Jiang, J. Yin, Q. Hu & J. Zhang, "Electrocatalytic performances of high-entropy spinel oxide (Cr1/5Mn1/5Ni1/5Fe1/5Co1/5)3 O4 for oxygen reduction/evolution reactions in alkaline electrolyte", Journal of Alloys and Compounds, vol. 1004, p. 175923, 2024.
[28] C. Feng, Y. Zhou, M. Chen, L. Zou, X.Li, X. An, Q. Zhao, P. Xiaokaiti, A.Abudula, K. Yan & G. Guan, "High-entropy spinel (FeCoNiMnAl)3O4 with three-dimensional microflower structure for stable seawater oxidation", Applied Catalysis B: Environment and Energy, vol. 349, p. 123875, 2024.
[29] M. R. Esmaeili, S. Noorsina & S. K. Sadrnezhaad, "High-entropy spinel-structured (VCrNiCoMn)3O4 anode for Li-ion batteries", Journal of Energy Storage, vol. 105, p. 114796, 2025.
[30] J. Dąbrowa, M. Stygar, A. Mikuła, A. Knapik, K. Mroczka, W. Tejchman, M. Danielewski & M. Martin, "Synthesis and microstructure of the (Co, Cr, Fe, Mn, Ni)3O4 high entropy oxide characterized by spinel structure", Materials Letters, vol. 216, pp. 32-36, 2018.
[31] A. Sarkar, R. Djenadic, D. Wang, Ch. Hein, R. Kautenburger, Clemens & H. Hahn, "Rare earth and transition metal based entropy stabilised perovskite type oxides", Journal of the European Ceramic Society, vol. 38, no. 5, pp. 2318-2327, 2018.
[32] K. A. Jarvis, C. C. Wang, A. Manthiram & P. J. Ferreira, "The role of composition in the atomic structure, oxygen loss, and capacity of layered Li–Mn–Ni oxide cathodes", Journal of Materials Chemistry A, vol. 2, no. 5, pp. 1353-1362, 2014.
[33] M. Chen, D. Chen, Y. Liao, X. Zhong, W. Li & Y. Zhang, "Layered lithium-rich oxide nanoparticles doped with spinel phase: acidic sucrose-assistant synthesis and excellent performance as cathode of lithium ion battery", ACS applied materials & interfaces, vol. 8, no. 7, pp. 4575-4584, 2016.
[34] B. Liang, Y. Ai, Y. Wang, C. Liu, S. Ouyang & M. Liu, "Spinel-type (FeCoCrMnZn)3O4 high-entropy oxide: Facile preparation and supercapacitor performance", Materials, vol. 13, no. 24, p. 5798, 2020.
[35] C. Duan, K. Tian, X. Li, D.Wang, H. Sun, R. Zheng, Zh. Wang &Y. Liu, "New spinel high-entropy oxides (FeCoNiCrMnXLi)3O4 (X= Cu, Mg, Zn) as the anode material for lithium-ion batteries", Ceramics International, vol. 47, no. 22, pp. 32025-32032, 2021.
[36] X. Fan, J. Shao, X. Xiao, L. Chen, X. Wang, Sh. Lia & H. Gea, "Carbon encapsulated 3D hierarchical Fe3O4 spheres as advanced anode materials with long cycle lifetimes for lithium-ion batteries", Journal of Materials Chemistry A, vol. 2, no. 35, pp. 14641-14648, 2014.
[37] Y. Deng, Q. Zhang, S. Tang, L. Zhang, Sh. Deng, Zh. Shibc & G. Chen, "One-pot synthesis of ZnFe2O4/C hollow spheres as superior anode materials for lithium ion batteries", Chemical communications, vol. 47, no. 24, pp. 6828-6830, 2011.
[38] N. Qiu, H. Chen, Z. Yang, S. Sun, Y. Wang & Y. Cui, "A high entropy oxide (Mg0.2 Co0.2 Ni0.2 Cu0.2 Zn0.2O) with superior lithium storage performance", Journal of Alloys and Compounds, vol. 777, pp. 767-774, 2019.
[39] B. Xiao, G. Wu, T. Wang, Zh. Wei, Y. Sui, B. Shen, J. Qi, F. Wei & J. Zheng, "High-entropy oxides as advanced anode materials for long-life lithium-ion Batteries", Nano Energy, vol. 95, p. 106962, 2022.
