Design and simulation of metal-insulator-metal waveguide for filtering and sensor applications
محورهای موضوعی : فصلنامه نانوساختارهای اپتوالکترونیکیAsieh Karimi 1 , Masoud Jabbari 2 , Ghahraman Solookinejad 3
1 - Department of Electrical Engineering, Marvdasht branch, Islamic Azad Universty, Marvdasht, Iran
2 - Department of Electrical Engineering, Marvdasht branch, Islamic Azad Universty, Marvdasht, Iran
3 - Department of physics, Marvdasht branch, Islamic Azad Universty, Marvdasht, Iran
کلید واژه: Filter, Plasmonic, MIM, Waveguide,
چکیده مقاله :
Abstract Plasmons in nanometer structures are caused by the interaction between electromagnetic waves and electrons on the metal surface. In this article, a comprehensive and detailed investigation of the effect of effective parameters on the performance of structured MIM waveguides (metal-insulator-metal) has been carried out. These structures are widely used in sensor applications based on refractive index changes or filters. This paper examines the impacts of altering factors like waveguide size, metal type, and insulation while also proposing novel structures with circular and square resonators,Then we simulated the structure of the MIM waveguide connected to the cavity of the T-shaped resonator for different values for the length L of the cavity, It is possible that this issue has a good use in filters and systems with high bandwidth to separate channels . Also,the properties of surface plasmon polaritons emission were investigated in the case where a resonator is vertically connected to it. The transmission diagram had compared to the MIM waveguide without resonator.
[1] M. G. Saber, R. H. Sagar, M. T. Al-Amin & A. Al Noor. Investigation of propagation properties of Surface Plasmon Polariton mode in AlGaAs/Ag/AlGaAs waveguide. Presented at 2nd International Conference on Advances in Electrical Engineering (ICAEE), (2013) 33-36.
Available: https://ieeexplore.ieee.org/abstract/document/6750300
[2] G. Xiao, X. Wang & Z. Zhou. Propagation Properties of Symmetric Surface Plasmon Polaritons Mode in Waveguide. IEEE Photonics Technology Letters. 24 (8) (2012) 628-630.
Available: https://ieeexplore.ieee.org/abstract/document/6130591
[3] H. Yang, J. Li & G. Xiao. Decay and propagation properties of symmetric surface plasmon polariton mode in metal–insulator–metal waveguide. Optics Communications. 395 (2017) 159-162.
Available: https://www.sciencedirect.com/science/article/abs/pii/S0030401815302443
[4] Z. Han & S. I. Bozhevolnyi. Waveguiding with surface plasmon polaritons. In Handbook of Surface Science. North-Holland, 2014, 137-187. Available: https://www.sciencedirect.com/science/article/abs/pii/B9780444595263000057
[5] V. K. Sharma, A. Kumar & A. Kapoor. Analysis of surface and guided wave plasmon polariton modes in insulator–metal–insulator planar plasmonic waveguides. Optics Communications. 285 (6) (2012) 1123-1127.
Available: https://www.sciencedirect.com/science/article/abs/pii/S0030401811011928
[6] A. Sellai & M. Elzain. Features of a insulator-metal-insulator plasmonic waveguide with a double grating. Presented at IEEE International Conference on Signal Processing and Communications (2007) 852-855. Available:
[7] Z. Zhang, Z. Zhang & H. Wang. The effect of the metal cylinder in the slot on the transmission properties of the metal–insulator–metal waveguide. Journal of Optoelectronical Nanostructures. 124 (23) (2013) 6351-6354.
Available: https://www.sciencedirect.com/science/article/abs/pii/S003040261300716X
[8] H. Yu, C. Sun, H. Tang, X. Deng & J. Li. A surface-plasmon-polariton wavelength splitter based on a metal–insulator–metal waveguide. Photonics and Nanostructures-Fundamentals and Applications. 12 (5) (2014) 460-465.
Available: https://www.sciencedirect.com/science/article/abs/pii/S1569441014000492
[9] L. Salomon, F. Grillot, A. V. Zayats & F. De Fornel. Near-field distribution of optical transmission of periodic subwavelength holes in a metal film. Physical review letters. 86 (6) (2001) 1110.
Available: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.86.1110
[10] M. Olyaee, M. B. Tavakoli & A. Mokhtari. Propose, Analysis and Simulation of an All Optical Full Adder Based on Plasmonic Waves using Metal-Insulator-Metal Waveguide Structure. Journal of Optoelectronical Nanostructures Review B. 54 (9) (2019) 6227.
Available: https://journals.marvdasht.iau.ir/article_3622_345ca515d72d1b069f68df919aba7b29.pdf
[11] S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. Skovgaard & J. M. Hvam. Waveguiding in surface plasmon polariton band gap structures. Physical review letters. 86 (14) (2001) 3008.
Available: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.86.3008
[12] L. Hajshahvaladi, H. Kaatuzian, M. Danaie & A. A. Nohiji. The effect of metal rods in a hybrid plasmonic-photonic crystal cavity design. Presented at 30th International Conference on Electrical Engineering (ICEE), (2022) 936-940.
Available: https://ieeexplore.ieee.org/abstract/document/9827340
[13] M. Mansouri, A. Mir & A. Ali Farmani. Numerical Modeling of a Nanostructure Gas Sensor Based on Plasmonic Effec. Journal of Optoelectronical Nanostructures. 4 (2) (2019, Spring).
Available: https://journals.marvdasht.iau.ir/article_3476_087a7e56aefeafb4744d557b38f01339.pdf
[14] S. G. Shafagh, H. Kaatuzian & M. Danaie. Analysis, design and simulation of MIM plasmonic filters with different geometries for technical parameters improvement. Communications in Theoretical Physics. 72 (8) (2020) 085502.
Available: https://iopscience.iop.org/article/10.1088/1572-9494/ab95f8/meta
[15] U. Kreibig & M. Vollmer. Theoretical Considerations. In: Kreibig, U. & Vollmer, M. (eds.) Optical Properties of Metal Clusters. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995, 13-201. Available: https://books.google.com/book
[16] M. Dehghani, M. Hatami & A. Gharaati. Supercontinuum Generation in Silica Plasmonic Waveguide by Bright Soliton. Journal of Optoelectronical Nanostructures. 6 (4) (2021) 109-136.
Available: https://jopn.marvdasht.iau.ir/article_5053_091fd039a5a3443e083aadc2211eab32.pdf
[17] K. Zarei, G. Solookinejad & M. Jabbari. Investigating the Properties of an Optical Waveguide Based on Photonic Crystal with Point Defect and Lattice Constant Perturbation. The Quarterly Journal of Optoelectronical Nanostructures. 1 (1) (2016, Spring) 65-80. Available: https://jopn.marvdasht.iau.ir/article_1816.html
[18] G. G. Zheng, L. H. Xu, Y. Z. Liu & W. Su. Optical filter and sensor based on plasmonic-gap-waveguide coupled with T-shaped resonators. Journal of Optoelectronical Nanostructures. 126 (23) (2015) 4056-4060.
Available: https://www.sciencedirect.com/science/article/abs/pii/S0030402615007597
[19] B. Laks, D. L. Mills & A. A. Maradudin. Surface polaritons on large-amplitude gratings. Physical Review B. 10 (1981) 4965.
Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.23.4965
[20] V. a. G. Rivera, O. B. Silva, Y. Ledemi, Y. Messaddeq & E. Marega. Plasmonic Nanostructure Arrays Coupled with a Quantum Emitter. In: Rivera, V. a. G., Silva, O. B., Ledemi, Y., Messaddeq, Y. & Marega Jr, E. (eds.) Collective Plasmon-Modes in Gain Media: Quantum Emitters and Plasmonic Nanostructures. Cham: Springer International Publishing, 2015, 71-116. Available: https://link.springer.com/book/10.1007/978-3-319-09525-7
[21] J. Jacob, A. Babu, G. Mathew & V. Mathew. Propagation of surface plasmon polaritons in anisotropic MIM and IMI structures. Superlattices and microstructures. 44 (3) (2008) 282-290.
Available:https://www.sciencedirect.com/science/article/abs/pii/S0749603608001092
[22] A. Abdikian, G. Solookinejad & Z. Safi. Electrostatics Modes in Mono-Layered Graphene. Journal of Optoelectronical Nanostructures Summer. 1 (2) (2016). Available: https://jopn.marvdasht.iau.ir/article_2044_ 8b18c60167baa91a0369f64730d82f40.pdf