Optoelectronical Properties of a Metalloid-Doped B12N12 Nano-Cage
محورهای موضوعی : فصلنامه نانوساختارهای اپتوالکترونیکیelham tazikeh 1 , fatemeh azimi 2 , fariborz kaveh 3 , majid monajemi 4
1 - Department of Chemistry, Gorgan Branch, Islamic Azad University,
Gorgan, Iran
2 - Department of Chemistry, Gorgan Branch, Islamic Azad University,
Gorgan, Iran
3 - Department of Chemistry, Gorgan Branch, Islamic Azad University, Gorgan, Iran
4 - Department of chemical engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
کلید واژه: B12N12 nano-cage, Opteoelectronical Properties, IR and UV-Vis Spectroscopies, TD-DFT Method,
چکیده مقاله :
Abstract: The opteoelectronical properties of B12N12 nano-cage was investigated in the
present of some metals by density functional theory (DFT). After the adsorption of a
toxic molecule with all complexes, the electronic properties in B11GeN12 nano-cage
were significantly increased. The UV-Vis adsorption and Infrared spectroscopy of
cyanogen chloride over the B11GeN12 have been performed by the time-dependent
density functional theory (TD-DFT). The increasing of λmax values from the pristine
B12N12 to B11GeN12, reveals that B11GeN12 nano-cages can be a suitable structure as
optic sensor for this gas detection. Overall, Because of the crystalline defect, Symmetry
disruption and the changes in the degree of polarization, the semiconductor property
affects these nano-cage systems. Finally, the changes of energy of gap (Eg) with a
significant charge transfer from this gas to Ge-doped nano-cage, which lead to changes
of conductance of it and render this kind of system sufficient for gas detection.
[1] S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58(23) (1987) 2486-2489. Available: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.58.2486
[2] E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58(20) (1987) 2059–2062. Available: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.58.2059
[3] D. Liu, Y. Gao, A. Tong, and S. Hu, Absolute photonic band gap in 2D honeycomb annular photonic crystals, Phys. Lett. A. 379(3) (2015) 214-217.
Available: https://www.sciencedirect.com/science/article/pii/S0375960114011591
[4] H. Alipour-Banaei and F. Mehdizadeh, Bandgap calculation of 2D hexagonal photonic crystal structures based on regression analysis, J. Opt. Commun. 34(4) (2013) 285-293.
Available: https://www.degruyter.com/view/j/joc.2013.34.issue-4/joc-2013-0033/joc-2013-0033.xml
[5] M. Noori, M. Soroosh, and H. Baghban, Highly efficient self-collimation based waveguide for Mid-IR applications, Photonics Nanostructures Fundam. Appl. 19 (2016) 1-11.
Available: https://www.sciencedirect.com/science/article/pii/S1569441016000067
[6] M. Noori and M. Soroosh, A comprehensive comparison of photonic band gap and self-collimation based 2D square array waveguides, Opt. Int. J. Light Electron Opt. 126(23) (2015) 4775-4781. Available: https://www.sciencedirect.com/science/article/pii/S0030402615008438
[7] Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, Active control of slow light on a chip with photonic crystal waveguides, Nature 438 (2005) 65-69. Available: https://www.nature.com/articles/nature04210
[8] G. Moloudian, R. Sabbaghi-Nadooshan, and M. Hassangholizadeh-Kashtiban, Design of all-optical tunable filter based on two-dimensional photonic crystals for WDM (wave division multiplexing) applications, J. Chinese Inst. Eng. Trans. Chinese Inst. Eng. A., 39(8) (2016) 971-976. Available: https://www.tandfonline.com/doi/abs/10.1080/02533839.2016.1215937?journalCode=tcie20
[9] M. Zamani, Photonic crystal-based optical filters for operating in second and third optical fiber windows, Superlattices Microstruct. 92 (2016) 157-165.
Available: https://www.sciencedirect.com/science/article/pii/S0749603616300684
[10] V. Fallahi and M. Seifouri, Novel structure of optical add/drop filters and multi-channel filter based on photonic crystal for using in optical telecommunication devices, J. Optoelectro. Nanostruc. 4(2) (2019) 53-68. Available: http://jopn.miau.ac.ir/article_3478.html
[11] Z. Rashki, S. J. S. Mahdavi Chabok, Novel Design for Photonic Crystal Ring Resonators Based Optical Channel Drop Filter, J. Optoelectro. Nanostruc. 3(3) (2018) 59-78. Available: http://jopn.miau.ac.ir/article_3046.html
[12] V. Kannaiyan, R. Savarimuthu, and S. K. Dhamodharan, Investigation of 2D-photonic crystal resonant cavity based WDM demultiplexer, Opto-Electronics Rev. 26(2) (2018) 108-115.
Available: https://www.sciencedirect.com/science/article/pii/S1230340217300951
[13] E. Rafiee and F. Emami, Design of a novel all-optical ring shaped demultiplexer based on two-dimensional photonic crystals, Opt. Int. J. Light Electron Opt. 140 (2017) 873-877.
Available: https://www.sciencedirect.com/science/article/pii/S0030402617305326
[14] R. Talebzadeh, M. Soroosh, Y.S. Kavian, and F. Mehdizadeh, Eight-channel all-optical demultiplexer based on photonic crystal resonant cavities, Opt. Int. J. Light Electron Opt., 140 (2017) 331-337. Available: https://www.sciencedirect.com/science/article/pii/S0030402617304795
[15] H. Alipour-Banaei, S. Serajmohammadi, and F. Mehdizadeh, All optical NAND gate based on nonlinear photonic crystal ring resonators, Opt. Int. J. Light Electron Opt. 130 (2017) 1214-1221. Available: https://www.sciencedirect.com/science/article/pii/S0030402616315261
[16] A. Kumar, M. M. Gupta, and S. Medhekar, All-optical NOT and AND gates based on 2D nonlinear photonic crystal ring resonant cavity, Opt. Int. J. Light Electron Opt. 179 (2019) 239-247. Available: https://www.sciencedirect.com/science/article/pii/S003040261831711X
[17] N. F.F. Areed, A. El Fakharany, M. F.O. Hameed, and S. S. A. Obayya, Controlled optical photonic crystal AND gate using nematic liquid crystal layers, Opt. Quantum Electron. 49 (2017) 45-53. Available: https://link.springer.com/article/10.1007/s11082-016-0852-z
[18] T. A. Moniem, All-optical XNOR gate based on 2D photonic-crystal ring resonators, Quantum Electron. 47(2) (2017) 169-176. Available: http://adsabs.harvard.edu/abs/2017QuEle..47..169M
[19] F. Mehdizadeh and M. Soroosh, Designing of all optical NOR gate based on photonic crystal, Indian J. Pure Appl. Phys. 54 (2016) 35-39. Available: http://op.niscair.res.in/index.php/IJPAP/article/view/5678/576
[20] M. Neisy, M. Soroosh, and K. Ansari-Asl, All optical half adder based on photonic crystal resonant cavities, Photonic Netw. Commun. 35(2) (2018) 245-250. Available: https://link.springer.com/article/10.1007/s11107-017-0736-6
[21] M. R. Jalali-Azizpoor, M. Soroosh, and Y. Seifi-Kavian, Application of self-collimated beams in realizing all-optical photonic crystal-based half-adder, Photonic Netw. Commun. 36(3) (2018) 344-343. Available: https://link.springer.com/article/10.1007/s11107-018-0786-4
[22] F. Cheraghi, M. Soroosh, and G. Akbarizadeh, An ultra-compact all optical full adder based on nonlinear photonic crystal resonant cavities, Superlattices Microstruct. 113 (2018) 359-365. Available: https://www.sciencedirect.com/science/article/pii/S0749603617322826
[23] S. Serajmohammadi, H. Alipour-Banaei, and F. Mehdizadeh, Proposal for realizing an all-optical half adder based on photonic crystals, Appl. Opt. 57(7) (2018) 1617-1621.
Available: https://www.osapublishing.org/ao/abstract.cfm?URI=ao-57-7-1617
[24] A. Rahmani and F. Mehdizadeh, Application of nonlinear PhCRRs in realizing all optical half-adder, Opt. Quantum Electron. 50 (2017) 30-37. Available: https://link.springer.com/article/10.1007/s11082-017-1301-3
[25] T. Daghooghi, M. Soroosh, and K. Ansari-Asl, A low-power all optical decoder based on photonic crystal nonlinear ring resonators, Opt. Int. J. Light Electron Opt. 174 (2018) 400-408. Available: https://www.sciencedirect.com/science/article/pii/S0030402618312397
[26] F. Mehdizadeh, H. Alipour-Banaei, and S. Serajmohammadi, Design and simulation of all optical decoder based on nonlinear PhCRRs, Opt. Int. J. Light Electron Opt. 156 (2018) 701-706. Available: https://www.sciencedirect.com/science/article/pii/S003040261731639X
[27] T. Daghooghi, M. Soroosh, and K. Ansari-Asl, Ultra-fast all-optical decoder based on nonlinear photonic crystal ring resonators, Appl. Opt. 57(9) (2018) 2250-2257.
Available: https://www.osapublishing.org/ao/abstract.cfm?URI=ao-57-9-2250
[28] F. Mehdizadeh, H. Alipour-banaei, and S. Serajmohammadi, Study the role of non-linear resonant cavities in photonic crystal-based decoder switches, J. Mod. Opt. 64(13) (2017) 1233-1239.
Available: https://www.tandfonline.com/doi/abs/10.1080/09500340.2016.1275854
[29] T. A. Moniem, All optical active high decoder using integrated 2D square lattice photonic crystals, J. Mod. Opt. 62(19) (2015) 1643-1649. Available: https://www.tandfonline.com/doi/abs/10.1080/09500340.2015.1061061?journalCode=tmop20
[30] F. Haddadan and M. Soroosh, Low-power all-optical 8-to-3 encoder using photonic crystal-based waveguides, Photonic Netw. Commun. 37(1) (2018) 67-73. Available: https://link.springer.com/article/10.1007/s11107-018-0795-3
[31] F. Mehdizadeh, M. Soroosh, and H. Alipour-Banaei, Proposal for 4-to-2 optical encoder based on photonic crystals, IET Optoelectron. 11(1) (2017) 29-35.
Available: https://digital-library.theiet.org/content/journals/10.1049/iet-opt.2016.0022
[32] A. Salimzadeh and H. Alipour-Banaei, An all optical 8 to 3 encoder based on photonic crystal OR-gate ring resonators, Opt. Commun. 410 (2018) 793-798.
Available: https://www.sciencedirect.com/science/article/pii/S0030401817310544
[33] T. A. Moniem, All-optical digital 4 × 2 encoder based on 2D photonic crystal ring resonators, J. Mod. Opt. 63(8) (2016) 735-741. Available: https://www.tandfonline.com/doi/abs/10.1080/09500340.2015.1094580?journalCode=tmop20
[34] K. Fasihi, All-optical analog-to-digital converters based on cascaded 3-dB power splitters in 2D photonic crystals, Opt. Int. J. Light Electron Opt. 125 (2014) 6520-6523.
Available: https://www.sciencedirect.com/science/article/pii/S0030402614009784
[35] F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei, and E. Farshidi, A novel proposal for all optical analog-to-digital converter based on photonic crystal structures, IEEE Photonics J. 9(2) (2017) 4700311–4700322. Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7891002
[36] F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei, and E. Farshidi, All optical 2-bit analog to digital converter using photonic crystal based cavities, Opt. Quantum Electron. 49 (2017) 38-45. Available: https://link.springer.com/article/10.1007/s11082-016-0880-8
[37] F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei, and E. Farshidi, Ultra-fast analog-to-digital converter based on a nonlinear triplexer and an optical coder with a photonic crystal structure, Appl. Opt. 56(7) (2017) 1799-1806. Available: https://www.osapublishing.org/ao/abstract.cfm?uri=ao-56-7-1799
[38] A. Tavousi and M. A. Mansouri-Birjandi, Optical-analog-to-digital conversion based on successive-like approximations in octagonal-shape photonic crystal ring resonators, Superlattices Microstruct. 114 (2018) 23-31.
Available: https://www.sciencedirect.com/science/article/pii/S0749603617323273
[39] A. Tavousi, M. A. Mansouri-Birjandi, and M. Saffari, Successive approximation-like 4-bit full-optical analog-to-digital converter based on Kerr-like nonlinear photonic crystal ring resonators, Phys. E Low-dimensional Syst. Nanostructures, 83(?) (2016) 101-106. Available: https://www.sciencedirect.com/science/article/pii/S1386947716301795?via%3Dihub
[40] Y. C. Jiang, S. B. Liu, H. F. Zhang, and X. K. Kong, Design of ultra-compact all optical half subtracter based on self-collimation in the two-dimensional photonic crystals, Opt. Commun., 356 (2015) 325-329. Available: https://www.sciencedirect.com/science/article/abs/pii/S0030401815006598?via%3Dihub
[41] F. Parandin, M. R. Malmir, and M. Naseri, All-optical half-subtractor with low-time delay based on two-dimensional photonic crystals, Superlattices Microstruct., 109 (2017) 437-441.
Available: https://www.sciencedirect.com/science/article/pii/S0749603617309849?via%3Dihub
[42] R. Sivaranjani, A. S. Raja, D. S. Sundar, and T. K. Shanthi, Design of 2-dimensional photonic crystal based all optical half subtractor, International J. Adv. Eng. Res. Develop. 5(8) (2018) 1-7. Available: http://ijaerd.com/papers/special_papers/NCMOC11.pdf
[43] H. A. Haus, Waves and fields in optoelectronics, Prentice-Hall, Chapter 7, 1984.