Dynamic Pull-in Instability of Nano-Actuators in the Presence of a Dielectric Layer
محورهای موضوعی : فصلنامه نانوساختارهای اپتوالکترونیکیMohammad Ghalambaz 1 , Ali J Chamkha 2 , Mehdi Ghalambaz 3 , Mohammad Edalatifar 4
1 - Department of Mechanical Engineering, Dezful Branch, Islamic Azad University, Dezful, Iran
2 - Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al-Khobar, 31952, Saudi Arabia.
3 - Department of Mechanical Engineering, Dezful Branch, Islamic Azad University, Dezful, Iran
4 - Department of Electrical Engineering, Dezful Branch, Islamic Azad University, Dezful, Iran
کلید واژه: dielectric layer, nano-actuator, natural frequency, pull-in instability,
چکیده مقاله :
The natural frequency and pull-in instability of clamped-clamped nano-actuators in the presence of a dielectric layer are analyzed. The influence of the presence of Casimir force, electrostatic force, fringing field effect, axial force, stretching effects and the size effect are taken into account. The governing equation of the dynamic response of the actuator is transformed in a non-dimensional form. The Galerkin decomposition method is employed to decompose the equations in time and space. Then, the obtained decomposed governing equations are solved numerically. The results show that the presence of the size effect and the axial force increases the natural frequency of the system. It is found that there is a unique value of the dielectric layer, in which the pull-in deflections of the nano-actuators are independent of the Casimir force, size effect and the axial loads. The advantage of this dielectric layer can be utilized in the design of nano-actuators and nano-sensors in the nanoscale.
[1] R. Soroush, A.L.I. Koochi, A.S. Kazemi, M. Abadyan, Modeling the Effect of Van Der Waals Attraction on the Instability of Electrostatic Cantilever and Doubly-Supported Nano-Beams Using Modified Adomian Method, International Journal of Structural Stability and Dynamics, 12 (2012) 1250036.
[2] R. Ansari, R. Gholami, M.F. Shojaei, V. Mohammadi, S. Sahmani, Surface stress effect on the pull-in instability of circular nanoplates, Acta Astronautica, 102 (2014) 140-150.
[3] M.A. Cullinan, R.M. Panas, C.M. DiBiasio, M.L. Culpepper, Scaling electromechanical sensors down to the nanoscale, Sensors and Actuators A: Physical, 187 (2012) 162-173.
[4] S. Demoustier, E. Minoux, M. Le Baillif, M. Charles, A. Ziaei, Review of two microwave applications of carbon nanotubes: nano-antennas and nano-switches, Comptes Rendus Physique, 9 (2008) 53-66.
[5] K. Kiani, Q. Wang, On the interaction of a single-walled carbon nanotube with a moving nanoparticle using nonlocal Rayleigh, Timoshenko, and higher-order beam theories, European Journal of Mechanics - A/Solids, 31 (2012) 179-202.
[6] H.S. Wasisto, S. Merzsch, A. Stranz, A. Waag, E. Uhde, T. Salthammer, E. Peiner, Silicon resonant nanopillar sensors for airborne titanium dioxide engineered nanoparticle mass detection, Sensors and Actuators B: Chemical, 189 (2013) 146-156.
[7] M.-O. Kim, K. Lee, H. Na, D.-S. Kwon, J. Choi, J.-I. Lee, D.-H. Baek, J. Kim, Highly sensitive cantilever type chemo-mechanical hydrogen sensor based on contact resistance of self-adjusted carbon nanotube arrays, Sensors and Actuators B: Chemical, 197 (2014) 414-421.
[8] M. Liao, Z. Rong, S. Hishita, M. Imura, S. Koizumi, Y. Koide, Nanoelectromechanical switch fabricated from single crystal diamond: Experiments and modeling, Diamond and Related Materials, 24 (2012) 69-73.
[9] L.-L. Ke, Y.-S. Wang, J. Yang, S. Kitipornchai, Free vibration of size-dependent Mindlin microplates based on the modified couple stress theory, Journal of Sound and Vibration, 331 (2012) 94-106.
[10] D.C.C. Lam, F. Yang, A.C.M. Chong, J. Wang, P. Tong, Experiments and theory in strain gradient elasticity, Journal of the Mechanics and Physics of Solids, 51 (2003) 1477–1508.
[11] A.W. McFarland, J.S. Colton, Role of material microstructure in plate stiffness with relevance to microcantilever sensors, Journal of Micromechanics and Microengineering, 15 (2005) 1060–1067.
[12] M. Mohammad-Abadi, A.R. Daneshmehr, Size dependent buckling analysis of microbeams based on modified couple stress theory with high order theories and general boundary conditions, International Journal of Engineering Science, 74 (2014) 1-14.
[13] A. Koochi, A.S. Kazemi, Y. Tadi Beni, A. Yekrangi, M. Abadyan, Theoretical study of the effect of Casimir attraction on the pull-in behavior of beam-type NEMS using modified Adomian method, Physica E: Low-dimensional Systems and Nanostructures, 43 (2010) 625-632.
[14] A. Farrokhabadi, N. Abadian, R. Rach, M. Abadyan, Theoretical modeling of the Casimir force-induced instability in freestanding nanowires with circular cross-section, Physica E: Low-dimensional Systems and Nanostructures, 63 (2014) 67-80.
[15] A. Farrokhabadi, R. Rach, M. Abadyan, Modeling the static response and pull-in instability of CNT nanotweezers under the Coulomb and van der Waals attractions, Physica E: Low-dimensional Systems and Nanostructures, 53 (2013) 137-145.
[16] E. Yazdanpanahi, A. Noghrehabadi, M. Ghalambaz, Pull-in instability of electrostatic doubly clamped nano actuators: Introduction of a balanced liquid layer (BLL), International Journal of Non-Linear Mechanics, 58 (2014) 128-138.
[17] H. M. Sedighi, F. Daneshmand, J. Zare, The influence of dispersion forces on the dynamic pull-in behavior of vibrating nano-cantilever based NEMS including fringing field effect. Archives of Civil and Mechanical Engineering, (In Press). DOI: 10.1016/j.acme.2014.01.004.
[18] A. Gusso, G.J. Delben, Dispersion force for materials relevant for micro and nanodevices fabrication, Journal of Physics D, Applied Physics, 41 (2008) 175405.
[19] A. Koochi, A.S. Kazemi, A. Noghrehabadi, A. Yekrangi, M. Abadyan, New approach to model the buckling and stable length of multi walled carbon nanotube probes near graphite sheets, Materials & Design, 32 (2011) 2949-2955.
[20] E.M. Abdel-Rahman, M.I. Younis, A.H. Nayfeh, Characterization of the mechanical behavior of an electrically actuated microbeam, Journal of Micromechanics and Microengineering 12 (2002) 759–766.
[21] L.X. Zhang, Y.P. Zhao, Electromechanical model of RF MEMS switches, Microsyst. Technol., 9 (2003) 420-426.
[22] F. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct., 39 (2002) 2731–2743.
[23] S.K. Park, X.L. Gao, Bernoulli–Euler beam model based on a modified couple stress theory, J. Micromech. Microeng., 16 (2006) 2355–2359.
[24] Y. Hayamizu, T. Yamada, K. Mizuno, R.C. Davis, D.N. Futaba, M. Yumura, K. Hata, Integrated three-dimensional microelectromechanical devices from processable carbon nanotube wafers, Nature Nanotechnology, 3 (2008) 289–294.
[25] F.P. Beer, J.H. Johnston, J.T. Dewolf, D.F. Mazurek, Mechanics of Material, 5th ed., Mc-Graw Hill Companies, New York, 2009.
[26] A. Ramezani, A. Alasty, J. Akbari, Pull-in parameters of cantilever type nanomechanical switches in presence of Casimir force, Nonlinear Analysis: Hybrid Systems, 1 (2007) 364-382.
[27] A. Ramezani, A. Alasty, J. Akbari, Closed-form solutions of the pull-in instability in nano-cantilevers under electrostatic and intermolecular surface forces, International Journal of Solids and Structures, 44 (2007) 4925-4941.
[28] R.C. Batra, M. Porfiri, D. Spinello, Vibrations of narrow microbeams predeformed by an electric field, Journal of Sound and Vibration, 309 (2008) 600-612.
[29] R.C. Batra, M. Porfiri, D. Spinello, Electromechanical model of electrically actuated narrow microbeams, J Microelectromech Syst, 15 (2006) 1175–1189.
[30] M. Moghimi Zand, M.T. Ahmadian, Application of homotopy analysis method in studying dynamic pull-in instability of microsystems, Mechanics Research Communications, 36 (2009) 851-858.
[31] R.C. Batra, M. Porfiri, D. Spinello, Vibrations and pull-in instabilities of microelectromechanical von Kármán elliptic plates incorporating the Casimir force, Journal of Sound and Vibration, 315 (2008) 939-960.
[32] H.A. Tilmans, R. Legtenberg, Electrostatically driven vacuum-encapsulated polysilicon resonators: Part II. Theory and performance, Sensors Actuators A, 45 (1994) 67–84.
[33] J.H. Kuang, C.-J. Chen, Dynamic characteristics of shaped micro-actuators solved using the differential quadrature method, Journal of Micromechanics and Microengineering, 14 (2004) 647-655.