واسنجی مدل هیدرولوژیکی WetSpa با استفاده از بهینهسازی چندهدفه NSGAII و PSO
محورهای موضوعی : برگرفته از پایان نامهحسین قلخانی 1 , فرهاد هوشیاری پور 2 , فرشاد کوهیان افضل 3 , مهیار شفیعی حسن آبادی 4
1 - دفتر مطالعات پایه منابع آب، شرکت مدیریت منابع آب ایران، وزارت نیرو، ایران
2 - گروه مهندسی عمران، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
3 - پژوهشکده مطالعات و تحقیقات منابع آب، موسسه تحقیقات آب، وزارت نیرو، ایران
4 - گروه علوم زمین و محیط زیست، دانشگاه واترلو، کانادا
کلید واژه: الگوریتم ژنتیک, WetSpa, مدل بارش رواناب, واسنجی, جامعه ذرات,
چکیده مقاله :
مدلهای بارش-رواناب مفهومی از جمله ابزارهای ساده و در عین حال کارآمد در مدلسازیهای هیدرولوژیکی هستند. این مدلها با در نظر گرفتن اطلاعات ورودی از قبیل بارش، تبخیر و تعرق و دمای اندازه گیری شده و اطلاعات توپوگرافی حوضه، رژیم جریان رودخانهها را با استفاده از روابط ریاضی شبیهسازی میکنند. مدل بارش-رواناب WetSpa از جمله مدلهای توزیعی است که در کشور بلژیک توسعه داده شده است. این مقاله قابلیت الگوریتمهای بهینهسازی ژنتیک و جامعه ذرات را در واسنجی مدل هیدرولوژیکی WetSpa به منظور شبیه سازی بارش – رواناب حوضه کارون بزرگ ارائه مینماید. الگوریتمهای بهینه سازی فوق به صورت چند هدفه برای واسنجی 11 پارامتر سراسری مدل WetSpa استفاده شدهاند. توابع هدف در نظر گرفته شده در این مقاله شامل دو شاخص نش-سوتکلیف و نش-سوتکلیف لگاریتمی است تا بوسیله آنها عملکرد مدل در پیش بینی دبیهای حداکثری و حداقلی بهبود یابد. نتایج نشان داده است که هر دو الگوریتم NSGA-II و PSO به ترتیب با ضریب رگرسیون 69/0 و 71/0 عملکرد مناسبی در کالیبراسیون مدل داشتهاند. مقدار شاخص RMSE در دوره واسنجی نیز به طور متوسط برابر 8/119 و 3/152 اندازه گیری شده است. پس از واسنجی و صحت سنجی مدل، از آن برای شبیهسازی سیلاب در یک دوره یکساله در حوضه مذکور استفاده گردیده و قابلیت مدل ارزیابی شده است. همچنین آنالیز حساسیت روی پارامترهای موثر نشان داد که ضریب رواناب سطحی با 40% تاثیر روی مقدار دبی جریان، حساسترین پارامتر سراسری مدل WetSpa بوده است.
Conceptual rainfall-runoff (RR) models, aiming at predicting stream flow from the knowledge of precipitation over a catchment, evapotranspiration, tempreture, and topography of the basin, have become basic and effective tools for flow regime simulation. Calibration of RR models, e.g. WetSpa which has been developed in Belgium, is a process in which parameter adjustment are made so as to match the dynamic behaviour of the RR model to the observed behaviour of the catchment. This research presents an application of the Non-dominated Sorting Genetic Algorithm II (NSGA-II) and Particle Swarm Optimization (PSO) for multi-objective calibration of WetSpa in Karoon river basin, Iran to optimize 11 global parameters of the WetSpa model. The objective functions are Nash–Sutcliffe and logarithmic Nash–Sutcliffe efficiencies in order to improve the model's performance. Results showed that the evolutionary NSGA-II and PSO algorithms are capable of locating optimal parameter sets in the search space. The measured correlation coefficient in the calibration process was 0.69 and 0.71 for the NSGA-II and PSO algorithms, respectively. Moreover RMSE values were calculated as 119.8 and 152.3 m3/s for the algorithms. The WetSpa model then was applied for a period of 1-year flood simulation in the basin and the results were analysed. Finally a sensitivity analysis was conducted on the global parameters in which the surface runoff coefficient was the most sensitive parameter with more than 40% influence on the results.
منابع:
1) Azin, M. 2012. Simulation of land use change scenarios on hydrograph of dinour basin by using wetspa distributed-hydrological model. Master's thesis, Faculty of Rangeland and Watershed Management. Gorgan University of Agricultural Sciences and Natural Resources (In Persian).
5) Bates, B.C. and Campbell, E.P. 2001. Runoff modeling. Water Resour. Res. 37(4): 937-947.
6) Baumgartner, U., Magele, C. and Renhart, W. 2004. Pareto optimality and particle swarm optimization. IEEE Trans Magn. 40(2):1172–1175.
7) Boyle, D.P., Gupta, H.V., and Sorooshian, S. 2000. Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods. Water Resour. Res. 36: 3663-3674.
8) Chau, K.W., 2007. Application of a particle swarm optimization algorithm to hydrological problems, Water Resources Research Progress, Liam N. Robinson (ed.), Nova Science Publishers. pp. 3-12.
9) Cheng, C.T., Ou, C.P. and Chaw, K.W. 2002. Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall-runoff model calibration. J. Hydrol. 268(1–4): 72-86.
10) Criss, R.E. and Winston W.E. 2008. Do Nash values have value? Discussion and alternate proposals, Hydrol. Process 22: 2723-2725.
11) De Smedt, F., Liu, Y.B. and Gebremeskel, S. 2000. Hydrological modelling on a catchment scale using GIS and remote sensed land use information. Brebbia, C.A. (ed.), 295-304, Risk Analyses II, WIT Press, Southampton, Boston.
12) Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Computation 6(2): 182-197.
13) Doherty, J. 2005. PEST: model independent parameter estimation, user manual, 5th edn. Watermark Numerical Computing, Brisbane.
14) Duan, Q., Gupta, V.K. and Sorooshian, S. 1992. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour Res. 28: 1015–1031.
15) Eberhart, R.C. 1996 Computational intelligence: a perspective evolutionary programming, pp. 239-245.
16) Feyen, L., Kalas, M., and Vrugt, J.A. 2008. Semi-distributed parameter optimization and uncertainty assessment for large-scale streamflow simulation using global optimization. Hydrol. Sci. J. des Sciences Hydrol. 53(2): 293-308.
17) Gill, M.K., Kaheil, Y.H., Khalil, A., McKee, M. and Bastidas, L. 2006. Multiobjective particle swarm optimization for parameter estimation in hydrology. Water Resources Research. 42(7):1-14.
18) Gupta, H.V., Sorooshian, S. and Yapo, P.O. 1998. Toward improved calibration of hydrological models: multiple and noncommensurable measures of information. Water Resour. Res. 34(4): 751-763.
19) Hu, X. and Eberhart, R.C. 2002. Multiobjective optimization using dynamic neighbourhood particle swarm optimization. In: Proceedings of the IEEE congress on evolutionary computation (CEC 2002), Honolulu, Hawaii, USA.
20) Jung, B.S. and Karney, B.W. 2006. Hydraulic optimization of Transient protection devices using GA and PSO approaches. Journal of Water Resources Planning and Management (ASCE). 132(1): 44–52.
21) Kabir, A. and Bahremand, A. 2013. Investigating the uncertainty of the parameters of the rainfall-runoff model using the monte carlo method wetspa. Water and Soil Conservation Research Journal 20(5): 81-97 (In Persian).
22) Kennedy, J. and Eberhart, R.C. 1995. Particle swarm optimization. In Proceedings of the IEEE international conference on neural networks IV (pp. 1942–1948). Piscataway: IEEE.
23) Khu, S.T., Savic, D. and Liu, Y. 2005. Evolutionary-based multi-objective meta-model approach for rainfall-runoff model calibration, Geophysical Research Abstracts. 7:09858.
24) Kuczera, G. 1997. Efficient subspace probabilistic parameter optimization for catchment models. Water Resour. Res. 33(1):177–185.
25) Kumar, D.N. and Reddy, M.J. 2007. Multipurpose reservoir operation using particle swarm optimization. Journal of Water Resources Planning and Management-ASCE. 133: 192-201.
26) Lacomme, P., Prins, C. and Sevaux, M. 2003. Multiobjective capacitated arc routing problem, Second International Conference, EMO 2003, Faro, Portugal, April 8-11, 2003.
27) Liu, Y.B. and De Smedt, F. 2004. WetSpa Extension, A GIS-based hydrologic model for flood prediction and watershed management documentation and user manual, Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel.
28) Liu, Y.B., Gebremeskel, S., De Smedt, F. and Pfisher, L. 2002. Flood prediction with the WetSpa model on catchment scale, in: Flood Defence ‘2002, Eds: Wu et al., Science Press, New York Ltd, ISBN: 1-880132-54-0.
29) Liu, Y.B., Gebremeskel. S., De Smedt, F., Hoffmann, L. and Pfister, L. 2003. A diffusive transport approach for flow routing in GIS-based flood modelling. Journal of Hydrology 283:91-106.
30) Madsen, H. 2000. Automatic calibration of a conceptual rainfall-runoff model using multiple objectives. Journal of Hydrology 235:276-288.
31) Makhdoum Farkhondeh, M. 2014. The foundation of spatial planning. Tehran University Publication, Tehran, Iran.
32) Sabercharny, K., Bahremand, A. and Salmani, H. 2015. Simulation of River Flow Daily Using Distributed Hydrological Model WetSpa, Case Study: Arzakoush, Gorganroud Watershed Basin, Gorgan Province. Quarterly journal of research on water resources and development. 2(10): 24-34 (In Persian).
33) Safari, A., De smedt, F. and Moreda, F. 2009. WetSpa model application in the distributed model intercomparison project (DMIP2). Journal of Hydrology 419: 78-89.
34) Saltelli, A., Chan, K. and Scott, E.M. 2000. Sensitivity analysis, Wiley, Chichester, UK. pp: 3-13.
35) Seibert, J. 2000. Multi-criteria calibration of a conceptual runoff model using a genetic algorithm. Hydrology and Earth System Sciences 4(2): 215-224.
36) Shafii, M. and Smedt, F.D. 2009. Multi-objective calibration of a distributed hydrological model (WetSpa) using a genetic algorithm. Hydrology and Earth System Sciences 13:2137-2149.
37) Sharifan, H., Dehghani, A.A. and Karimi Rad, A. 2012. Correlation coefficient for Hargreaves-Samani method for estimation of reference evapotranspiration (Case study: Synoptic Station of Gorgan). Journal of Water and Soil Conservation Studies 19(3): 227-235 (In Persian).
38) Sierra, M.R. and Coello Coello, C.A. 2005. Improving PSO-based multi-objective optimization using crowding, mutation and e-dominance. In: Coello Coello CA, Aguirre HA, Zitzler E (eds) Evolutionary multicriterion optimization. Third International Conference, EMO 2005. Lecture notes in computer science, vol 3410. Springer, Guanajuato, Mexico, pp 505–519.
39) Sorooshian, S. and Dracup, J.A. 1980. Stochastic parameter estimation procedures for hydrologic rainfall-runoff models: correlated and heteroscedastic error cases. Water Resour Res. 16(2):430–442.
40) Van Griensven, A. 2002. Developments towards integrated water quality modeling for river basins, PhD Thesis, Vrije Universiteit Brussel, Belgium.
41) Vrugt, J., Gupta, H.V., Bastidas, L.A., Bouten, W. and Sorooshian, S. 2003. Effective and efficient algorithm for multiobjective optimization of hydrologic models. Water Resour. Res. 39(8):1214, doi:1210.1029/2002WR001746, 2003.
42) Wang, Z.M., Batelaan, O. and De Smedt, F. 1997. A distributed model for water and energy transfer between soil, plants and atmosphere (WetSpa). Phys. Chem. Earth 21(3): 189-193.
43) Yapo, P.O., Gupta, H.V. and Sorooshian, S. 1998. Multi-objective global optimization of hydrological models. Journal of Hydrology 204:83–97.
44) Zhang, X., Srinivasan, R., Zhao, K. and Van Liew, M. 2008. Evaluation of global optimization algorithms for parameter calibration of a computationally intensive hydrologic model. Hydrological Processes 23(3):430-441.
Zitzler, E., Deb, K. and Thiele, L. 2000. Comparison of multiobjective evolutionary algorithms: empirical results. Evolutionary Comput. 8(2):173-195, 2000.
_||_