مشارکت منابع رسوبی حوضهای و آبراههای در تامین بار رسوب معلق رگبار در آبخیز گلازچای
محورهای موضوعی : برگرفته از پایان نامهسیدحمیدرضا صادقی 1 , پری سعیدی 2 , عبدالرسول تلوری 3
1 - استاد (مسئول مکاتبات) گروه مهندسی آبخیزداری، دانشکده منابعطبیعی دانشگاه تربیت مدرس
2 - دانشآموخته دکتری علوم و مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس
3 - دانشیار، پژوهشکده حفاظت خاک و آبخیزداری
کلید واژه: توزیع اندازه ذرات رسوبی, رفتار رسوبی, مدیریت آبخیز, مشارکت زمانی تولید رسوب,
چکیده مقاله :
تولید رسوب معلق فرایندی غالب در بسیاری از حوضهها محسوب میشود و سهم مهمّی را در تولید رسوب کل خروجی از آنها بر عهده دارد. با وجود این، تعیین مشارکت منابع اصلی مکانی رسوب در حوضهها بهعنوان یکی از مبانی اصلی تبیین شیوههای مدیریت رسوب کمتر مورد توجه قرار گرفته است. لذا، تحقیق موردی حاضر با هدف بررسی مشارکت منابع رسوبی حوضهای و آبراههای در تولید رسوب معلق کل در حوضهی گلازچای در استان آذربایجان غربی با مساحت حدود 103 کیلومترمربع انجام شد. بدینمنظور، نمونههای رسوب 12 رگبار بهوقوع پیوسته طی دورهی زمانی زمستان 1392 تا پائیز 1393 تهیه، و دانهبندی لیزری آنها انجام پذیرفت. نتایج حاصل از تحلیل دانهبندی رسوب معلق نشاندهندهی مشارکت عمدهی بار رسوبی حوضهای با میانگین 95/11± 45/89 درصد در تامین رسوب رگبارهای مورد مطالعه بود. همچنین میانگین مشارکت بار معلق حوضهای در فصلهای زمستان 1392، بهار 1393 و پائیز 1393 در تولید رسوب کل حوضه مورد مطالعه بهترتیب 17/92، 71/90 و 80/85 درصد بوده و طبعاً بر ضرورت توجهی ویژه به مدیریت بالادست حوضه در راستای مدیریت رسوب خروجی از آبخیز مطالعاتی تاکید دارد.
Suspended sediment generation is a predominant process in most watersheds, which has an important role in total sediment yield reached the main outlet of the watershed. However, the determination of contribution of main sediment sources in the watersheds, as one of fundamental bases of sediment management practices, has been rarely considered. Hence, on the present case study was conducted Galazchai Watershed in West-Azarbaijan Province, Iran, with an area of some 103 km2 to investigate the contribution of wash and bed sediment sources in total suspended sediment yield. Towards this attempt, sediment samples from 12 storm events which occurred during the spring of 2014 and autumn of 2014, were collected and subjected to laser particle size distribution measurement. The suspended sediment particle size distribution results verified a significant contribution of wash load with an average of 89.45± 11.95% in suspended sediment supply for the study storms. The mean contribution in the spring of 2014, summer of 2014 and autumn of 2014 were founded to be 92.17, 90.71 and 85.80%, respectively. The results consequently verified the necessity of special attention to management of watershed upstream in order to plan a proper sediment management of the study watershed.
1) دبیری، س.س.، صوفی، م. و طالب بیدختی، ن.، 1392. بررسی عملکرد سدهای اصلاحی آبخیزداری در مهار کردن رسوب (مطالعه ی موردی: حوضههای آبخیز شهرستان های اقلید، مرودشت و ممسنی استان فارس)، مهندسی منابع آب، 6(18): 1-22.
2) سعیدی پ. و صادقی، س.ح.ر.، 1389: تحلیل رسوبنگارها و حلقههای سنجه مشاهداتی رگبارها در حوزه آبخیز آموزشی دانشگاه تربیت مدرس، پژوهشهای حفاظت آب و خاک، 17(1): 97- 112.
3) سعیدی پ.، و صادقی، س.ح.ر.، 1391: کاربرد تحلیل مشارکت فصلی و ماهانه رواناب و رسوب معلق در مدیریت حوزه آبخیز، کنفرانس ملی مدیریت جامع حوزههای آبخیز و تولید ملی، ملایر، 3 اسفند، 1391، 6 ص.
4) صادقیس. ح. ر.،آقابیگیامین،س.،یثربیب.،وفاخواهم. واسماعیلیساریع.، 1384: تغییراتزمانیو مکانیتولیدرسوبمعلقزیرحوزههایمهمآبخیزهراز،پژوهشنامهعلومکشاورزیومنابعطبیعیخزر، 3: 15-29.
5) صادقی س.ح.ر. و ذاکری م.ع.، 1392: توزیعاندازهذراترسوبمعلقدرفواصلزمانیمعیندررودکجور، نشریهحفاظتمنابعآبوخاک، 3(2): 73-82.
6) عربخدریم.،کمالی ک. و حسینیم.، 1391. خصوصیات بافتیموادمعلقنهشتهشدهدرسامانههایاستحصال سیلاب،اولینکنفرانسملیسامانههایسطوحآبگیرباران، 22 و23آذر،1391،مشهد،مرکزآموزشجهادکشاورزی. 4 ص.
7) مصطفیزاده ر.، صادقی س.ح.ر. و سعدالدین ا.، 1393: تحلیل رسوبنمود و حلقههای سنجه رسوب رگبار در حوزه آبخیز گلاز اشنویه، آذربایجان غربی، پژوهشهای حفاظت آب و خاک، 21 (5): 175-190.
8) Andermann C., Crave A., Gloaguen R., Davy P. and Bonnet S., 2012. Connecting source and transport: Suspended sediments in the Nepal Himalayas. Earth Planetary Science Letters. 351–352: 158–170.
9) Blanchard R. A., Ellison C. A., Galloway J. M. and Evans D. A., 2011. Sediment concentrations, loads, and particle-size distributions in the Red River of the North and selected tributaries near Fargo, North Dakota, during the 2010 spring high-flow event. U. S. Geological Survey, 27 p.
10) De Girolamo A.M., Pappagallo G. and Porto A.L., 2015. Temporal variability of suspended sediment transport and rating curves in a Mediterranean river basin: The Celone (SE Italy), Catena. 128: 135–143.
11) Duvert C., Gratiot N., Evrard O., Navratil O., Nemery J., Prat C. and Esteves, M. 2010. Drivers of erosion and suspended sediment transport in three headwater catchments of the Mexican Central Highlands. Geomorphology. 123: 243-256.
12) Gellis A.C., 2013. Factors influencing storm-generated suspended-sediment concentrations and loads in four basins of contrasting land use, humid tropical Puerto Rico. Catena. 104: 39–57.
13) Gomi T., Sidle R.C. and Swanston D.N., 2004. Hydrogeomorphic linkage of sediment transport in headwater stream, Maybeso Experimental Forest, southeast Alaska, Hydrological Processes. 18: 667-683.
14) Hejduk L. and Banasik K., 2010. Variations in suspended sediment grain sizes in flood events of a small lowland river. IAHS-AISH publication: 189-196.
15) Iida T., Kajihara A., Okubo H. and Okajima K., 2012. Effect of seasonal snow cover on suspended sediment runoff in a mountainous catchment. Journal of Hydrology. 428–429: 116–128.
16) Julien P.Y., 2009. Fluvial transport of suspended solids. Encyclopedia of Inland Waters. 1: 681-683
17) Kuhnle R.A., 2013. Suspended load. Treatise on Geomorphology, 9: 124-136.
18) Periago E.L. and Soto B., 2004. Modeling wash load transport of soil in a headwater catchment cultivated by non-tillage methods, Journal of Hydrology. 287:19-33.
19) Pietron J., Jarsjo J., Romanchenko R. and Chalov S., 2015. Model analyses of the contribution of in-channel processes to sediment concentration hysteresis loops, Journal of Hydrology. 527: 576–589.
20) Ryan S.E. and Dixon M.K., 2008. Spatial and temporal variation in stream sediment load using examples from the Gros Ventre Range, Wyoming, USA, Gravel-Bed Rivers VI: From Process Understanding to River Restoration. 6(11): 387-407.
21) Sadeghi S.H.R., Aghabeigi Amin S., Vafakhah M., Yasrebi B. and Esmaeili Sari A., 2006. Suitable drying time for suspended sediment samples, Iran, P 71. International Sediment Initiative Conference, Khartoum, Sudan. Nov. 12–16.
22) Sadeghi S.H.R., Mizuyama T., Miyata S., Gomi T., Kosugi K., Fukushima T., Mizugaki S. and Onda Y., 2008. Determinant factors of sediment graphs and rating loops in a reforested watershed. Journal of Hydrology. 356: 271– 282.
23) Sadeghi S.H.R. and Saeidi P., 2010. Reliability of sediment rating curves for a deciduous forest watershed in Iran, Hydrological Sciences Journal. 55(5): 821–831.
24) Sadeghi S.H.R. and Zakeri M.A., 2015. Partitioning and Analyzing Temporal Variability of Wash and Bed Material Loads in a Forest Watershed in Iran, Journal of Earth System Science. 24(7): 1503-1515.
25) Sun, L. Yan M., Cai Q. and Fang H., 2015. Suspended sediment dynamics at different time scales in the Loushui River, south-central China, Catena. doi:10.1016/j.catena.2015.02.014.
26) Ta W., Wang H. and Jia X., 2016. Suspended sediment transport response to upstream wash-load supply in the sand-bed reach of the Upper Yellow River, China, Journal of Hydrology. doi: http://dx.doi.org/10.1016/j.jhydrol.2015.06.051.
27) Walling D.E. and Webb B.W., 1982. Sediment availability and the prediction of storm-period sediment yields. Recent developments in the explanation and prediction of erosion and sediment yield, IAHS Publication. 137: 327–337.
28) Walling D. E., Owens P. N., Waterfall B. D., Leeks G. J. and Wass P. D., 2000. The particle size characteristics of fluvial suspended sediment in the Humber and Tweed catchments, UK. Science of the Total Environment. 251: 205-222.
29) Walling D.E., Collins A.L., Sichingabula H.A. and Leeks G.J.L., 2001. Integrated assessment of catchment suspended sediment budgets: A Zambian Example. Land Degradation and Development. 12: 387-415.
_||_