بررسی اثر زمان آسیاکاری و دمای تفجوشی بر ریزساختار و خواص مکانیکی کامپوزیت Al/SiC تولید شده به روش متالورژی پودر
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نویننفیسه طلاوری 1 , خلیل الله قیصری 2 , محسن ریحانیان محسن ریحانیان 3
1 - دانشجوی کارشناسی ارشد رشته شناسایی و انتخاب مواد، دانشگاه شهید چمران اهواز، دانشکده مهندسی، گروه مهندسی مواد.
2 - استادیار، دانشگاه شهید چمران اهواز، دانشکده مهندسی، گروه مهندسی مواد.
3 - دانشیار، دانشگاه شهید چمران اهواز، دانشکده مهندسی، گروه مهندسی مواد.
کلید واژه: آسیاکاری مکانیکی, زمان آسیاکاری, دمای تفجوشی, مقاومت سایشی, کامپوزیت Al/SiC,
چکیده مقاله :
امروزه کامپوزیتهای زمینه فلزی به خاطر خواص مکانیکی و مقاومت به سایش مناسب، توجه زیادی را به خود معطوف کرده است. در این تحقیق، تاثیر زمان آسیاکاری و دمای تفجوشی بر ریزساختار و خواص مکانیکی کامپوزیت زمینه آلومینیومی تقویت شده با ذرات SiC مورد بررسی قرار گرفت. پودرهای آلومینیوم و کاربید سیلیسیوم، در زمانهای متفاوت 5/0، 1 ، 2 ، 4 و 8 ساعت، تحت اتمسفر گاز آرگون با نسبت حجمی 20 درصد فاز تقویت کننده در آسیای گلولهای سیارهای، آسیاکاری شدند. سپس مخلوط به دست آمده در فشار 500 مگاپاسکال در دمای محیط به صورت سرد فشرده و به شکلهای قرص و استوانه تولید شد. با بررسی خواص ریزساختاری نمونهها، زمان بهینه آسیاکاری تعیین شد. پس از تعیین زمان مناسب آسیاکاری، نمونهها در کپسولهای کوچکی محبوس و به مدت 1 ساعت در دماهای 400، 450، 500، 550 و 600 درجه سانتیگراد تفجوشی شدند. به منظور بررسی مورفولوژی و توزیع ذرات تقویت کننده در زمینه، از میکروسکوپ الکترونی روبشی و برای بررسی خواص مکانیکی و تریبولوژیکی کامپوزیتها از آزمون سختیسنجی و سایش استفاده شد. نتایج نشان داد که زمان بهینه برای آسیاکاری 8 ساعت و دمای بهینه تفجوشی 0C600 است. همچنین نتایج نشان داد که با افزایش دمای تف جوشی، سختی، چگالی و مقاومت به سایش افزایش مییابد
Metal matrix composites (MMCs) are considered for their mechanical properties and wear resistance. In this study, the effect of milling time and sintering temperature on the microstructure and mechanical properties of Al/SiC composites was studied. Firstly, the powders with volume fraction of Al/20% SiC were mixed in a planetary ball mill under argon atmosphere for milling time of 0.5, 1, 2, 4 and 8 h. Then, the mixed powders were pressed by a cold pressure of 500 MPa into pellets and rods. With regard to the microstructure properties of the samples, the optimized milling time was determined. Then, the pressed samples were capsulated and sintered for 1 h at 400, 450, 500, 550 and 600 0C. Morphology, mechanical and tribological properties of the prepared composites was evaluated by scanning electron microscope (SEM), hardness and wear test. The result showed that the optimized milling time and sintering temperature are 8 h and 600 0C, respectively. Also, density, hardness and wear resistance increase with increasing sintering temperature.
1- K. K. Chawla, “ Metal Matrix Composie” , Springer , New York, USA , 2006 .
2- J.M. Torralba, C.E. da Costa, and F. Velasco, “P/M Aluminum Matrix Ccomposites: an Overview”, Journal of Materials Processing Technology, Vol. 133, 2003, pp. 203–206.
3- M.K. Surappa, " Aluminum Matrix Composite: Challenges and Opportunities ", Sadhana, Vol. 28, 2003 , pp. 319-334.
4- ن. نصیریان و خ. رنجبر، " بررسی خواص مکانیکی و ریزساختاری کامپوزیت Al/Brassساخته شده به روش اتصال نوردی تجمعی"، مجله مواد نوین، جلد 3، شماره 1، صص45-54، پاییز 1391.
5- ح. شریفی، م. حیدری، م. دیواندری، ع. خاوندی، " بررسی رفتار سایش خشک کامپوزیت های ZrO / Mg-Al تهیه شده به روش نفوذدهی بدون فشار"، مجله مواد نوین،جلد3 شماره 4، صص 13-26، تابستان 1392.
6- ع. عبدالهی، ع. علیزاده، "تولید نانوکامپوزیت دوجزئی فوق مستحکم زمینه آلومینیومی به روش آلیاژسازی مکانیکی و اکستروژن داغ و بررسی خواص مکانیکی آن"، مجله مواد نوین، جلد 4 ، شماره 1، صص 83-95، پاییز 1392.
7- T. Imai, J.F. Mao, Sh. Dong, I. Shigematsu, N. Saito, and G. Esperance, " High Strain Rate Superplasticity of TiC Particulate Reinforced 2014 Aluminum Alloy Composites", Materials Science and Engineering: A, Vol. 364, pp. 281–286. 2004.
8- Z. Sadeghian, B. Lotfi, M.H. Enayati, and P. Beiss, “Microstructural and Mechanical Evaluation of Al–TiB2 Nanostructured Composite Fabricated by Mechanical Alloying”, Journal of Alloys and Compounds, Vol. 509 , pp. 7758– 7763. 2011.
9- C. Hofmeister, B. Yao, Y. H. Sohn, T. Delahanty, M. Van den Bergh, and K. Cho, "Composition and Structure of Nitrogen-Containing Dispersoids in Trimodal Aluminum Metal–Matrix Composites", Journal of Materials Science, Vol.45 , pp. 4871–4876. 2010.
10- B. Xionga, , Zh. Xua, Q. Yana, C. Caia, Y. Zhenga, and B. Lub, "Fabrication of SiC Nanoparticulates Reinforced Al Matrix Composites by Combining Pressureless Infiltration with Ball-Milling and Cold-Pressing Technology", Journal of Alloys and Compounds, Vol. 497, pp.L1–L4. 2010.
11- S.J. Hong, P.W. Kao, and C.P. Chang, " Microstructural Development in Al_SiC Composites Made by Resistance Sintering of Mechanically Alloyed Powder", Material Science and Engineering A, Vol. 158, pp.195-202. 1992.
12- C.S. Shin, and J.C. Huang, "Effect of Temper, Specimen Orientation and Test Temperature on the Tensile and Fatigue Properties of SiC Particles Reinforced PM 6061 Al Alloy", International Journal of Fatigue, Vol. 32, pp. 1573–1581. 2010.
13- S.C. Tjong, and Z.Y. Ma, "High-Temperature Creep Behaviour of Powder-Metallurgy Aluminium Composites Reinforced with SiC Particles of Various Sizes", Composites Science and Technology, Vol. 59, pp. 1117-1125. 1999.
14- Z.Z. Chena, and K. Tokaji, "Effects of Particle Size on Fatigue Crack Initiation and Small Crack Growth in SiC Particulate-Reinforced Aluminium Alloy Composites", Materials Letters, Vol. 58, pp. 2314– 2321. 2004.
15- T.S. Srivatsan, and R. Auradkar, "Effect of Silicon Carbide Particulateon Cyclic Plastic Strain Response Characteristics and Fracture of Aluminiurn Alloy Composites", International Journal of Fatigue, Vol. 14, pp. 355-366. 1992.
16- S.M.R. Mousavi Abarghouie, and S.M. Seyed Reihani, "Aging Behavior of a 2024 Al Alloy-SiCp Composite", Materials and Design, Vol. 31, pp. 2368–2374. 2010.
17- Y. Sahin, "Abrasive Wear Behavior of SiC/2014 Aluminium Composite", Tribology International, Vol. 43, pp. 939–943. 2010.
18- C. Suryanarayana, "Mechanical Alloying and Milling", Progress in Materials Science, Vol. 46, pp. 1-184. 2001.
19- B.D. Culity, "Elements of X-ray Diffraction", 2 ed, Addison Wesley Publishing Company, Massachusetts, 1978.
20- R.M. German, "Sintering Theory and Practice", New York, Wiley, 1996.
21- DA. Porter, and KE. Easterling, "Phase Transformations in Metals and Alloys", McGraw-Hill, 1980.
22- M. Rahimian , N. Parvin , and N. Ehsani. "The Effect of Production Parameters on Microstructure and Wear Resistance of Powder Metallurgy Al–Al2O3 Composite", Materials and Design, Vol. 32, p.p. 1031–1038. 2011.
23- H. Arik, "Effect of Mechanical Alloying Process on Mechanical Properties of a-Si3N4 Reinforced Aluminum-Based Composite Materials", Materials and Design, Vol. 29, p.p. 1856–1861. 2008.
24- H. Abdizadeh, M. Ashuri, P. Tavakoli Moghadam, A. Nouribahadory, and H.R. Baharvandi, "Improvement in Physical and Mechanical Properties of Aluminum/Zircon Composites Fabricated by Powder Metallurgy Method", Materials and Design, Vol. 32, p.p. 4417–4423. 2011.
25- J.F. Archard, "Contact and Rubbing of Flat Surface", Journal of Applied Physics, Vol. 24, pp.981–988. 1953.