بررسی اثر آلایش ایندیوم بر خواص ساختاری و نوری لایههای نازک سولفید قلع تهیه شده با روش الکتروانباشت
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوین
1 - گروه مهندسی مواد، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران
2 - گروه مهندسی مواد، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران
کلید واژه: سولفید قلع, خواص نوری, رسوب الکتروشیمیایی, لایههای نازک نانوساختار, انرژی پهنای باند,
چکیده مقاله :
با استفاده از روش رسوب الکتروشیمیایی، لایههای نازک سولفید قلع (SnS) خالص و آلایش یافته با ایندیوم از یک محلول آبی تهیه شدند. دمای حمام، زمان لایهنشانی، پتانسیل انباشت لایه و pH به ترتیب ℃ 60، 30 دقیقه، V 1- و 1/2 بودند. لایههای نازک تهیه شده با استفاده از روشهای پراش پرتو X (XRD)، میکروسکوپ الکترونی عبوری (FESEM)، نورتابناکی (PL) و طیف نگاری UV-vis مشخصهیابی شدند. الگوهای XRD نشان دادند که آلایش ایندیوم، منجر به کاهش کیفیت بلوری و ریزتر شدن اندازه بلورها میگردد. تصاویر FESEM نشان دادند که مورفولوژی لایههای نازک دانه-شکل بوده و ساختارهایی در مقیاس میکرو/نانومتری وجود داشت. نتیجه آزمایش فوتولومینوساناس (PL) نشان داد که در اثر آلایش ایندیوم یک قله نشری جدیدی در محدوده نشر نور نارنجی ایجاد میشود. آنالیز طیف نگاری UV-vis نشان داد که ویژگی جذب نور لایههای نازک SnS پس از آلایش ایندیوم بهبود یافته و انرژی پهنای باند لایههای SnS خالص از eV 45/1 به eV 40/1 کاهش یافت. بنابراین، کلیه نتایج نشاندهنده نقش کلیدی آلاینده ایندیوم بر خواص ساختاری و نوری لایههای نازک SnS است.
Undoped and In-doped SnS thin films have been prepared using an electrochemical deposition method. The bath temperature, deposition time, deposition potential, and pH kept constant at 60 ℃, 30 minutes, -1 V and 2.1, respectively. The synthesized un- and In-doped SnS thin films have been characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), room temperature photoluminescence (PL), and UV-vis spectroscopy. The XRD patterns showed that the crystalline quality and crystallite size has been decreased after In-doping. The morphology of un-and In-doped SnS thin films was grain-like. A new PL emission peak has been appeared after In-doping. The absorbance spectra of In-doped SnS thin films have been improved, compared with that of undoped SnS. In addition, the band gap energy of undoped SnS is decreased from 1.5 eV to 1.45 eV due to In-doping. Therefore, all results showed that the key role of indium dopant on the structural and optical properties of SnS thin films.
References:
1- ضرغامی, وحید, محمدی, ایجاد مورفولوژی های گوناگون نانوساختارهای کادمیم سلنید با تغییر حلال در روش سلووترمال, فصلنامه علمی-پژوهشی مواد نوین, 4 (2013) 93-102.
2-H. Tsukigase, Y. Suzuki, M.-H. Berger, T. Sagawa, S. Yoshikawa, Synthesis of SnS nanoparticles by SILAR method for quantum dot-sensitized solar cells, Journal of nanoscience and nanotechnology, 11 (2011) 1914-1922.
3- S. Gedi, V.R. Minnam Reddy, T.R. Reddy Kotte, S.-H. Kim, C.-W. Jeon, Chemically synthesized Ag-doped SnS films for PV applications, Ceramics International, 42 (2016) 19027-19035.
4- F. Alam, V. Dutta, Tin sulfide (SnS) nanostructured films deposited by continuous spray pyrolysis (CoSP) technique for dye-sensitized solar cells applications, Applied Surface Science, 358 (2015) 491-497.
5- B.H. Baby, V.M. Vaisakh, D. Bharathi Mohan, Fabrication and phase characterization study of SnS thin films under controlled sulfur deposition temperature, Materials Today: Proceedings, 3 (2016) 2077-2084.
6- J.-y. Kang, S.-M. Kwon, S.H. Yang, J.-H. Cha, J.A. Bae, C.-W. Jeon, Control of the microstructure of SnS photovoltaic absorber using a seed layer and its impact on the solar cell performance, Journal of Alloys and Compounds, 711 (2017) 294-299.
7- V.R.M. Reddy, S. Gedi, C. Park, R. Miles, R.R. KT, Development of sulphurized SnS thin film solar cells, Current Applied Physics, 15 (2015) 588-598.
8- Z. Wang, S. Qu, X. Zeng, J. Liu, C. Zhang, F. Tan, L. Jin, Z. Wang, The application of SnS nanoparticles to bulk heterojunction solar cells, Journal of Alloys and Compounds, 482 (2009) 203-207.
9- W. Gao, C. Wu, M. Cao, J. Huang, L. Wang, Y. Shen, Thickness tunable SnS nanosheets for photoelectrochemical water splitting, Journal of Alloys and Compounds, 688 (2016) 668-674.
10- S. Zhang, S. Cheng, Thermally evaporated SnS: Cu thin films for solar cells, Micro & Nano Letters, 6 (2011) 559-562.
11- M. Devika, N.K. Reddy, K. Ramesh, K. Gunasekhar, E. Gopal, K.R. Reddy, Low resistive micrometer-thick SnS: Ag films for optoelectronic applications, Journal of the Electrochemical Society, 153 (2006) G727-G733.
12- G. Gordillo, M. Botero, J.S. Oyola, Synthesis and study of optical and structural properties of thin films based on new photovoltaic materials, Microelectronics Journal, 39 (2008) 1351-1353.
13- P. Sinsermsuksakul, R. Chakraborty, S.B. Kim, S.M. Heald, T. Buonassisi, R.G. Gordon, Antimony-doped tin (II) sulfide thin films, Chemistry of Materials, 24 (2012) 4556-4562.
14- M. Reghima, A. Akkari, C. Guasch, M. Castagné, N. Kamoun-Turki, Synthesis and characterization of Fe-doped SnS thin films by chemical bath deposition technique for solar cells applications, Journal of Renewable and Sustainable Energy, 5 (2013) 063109.
15- F. Niknia, F. Jamali-Sheini, R. Yousefi, Photocurrent properties of undoped and Pb-doped SnS nanostructures grown using electrodeposition method, Journal of Electronic Materials, 44 (2015) 4734-4739.
16- F. Niknia, F. Jamali-Sheini, R. Yousefi, Examining the effect of Zn dopant on physical properties of nanostructured SnS thin film by using electrodeposition, Journal of Applied Electrochemistry, 46 (2016) 323-330.
17- H.-T. Hsu, M.-H. Chiang, C.-H. Huang, W.-T. Lin, Y.-S. Fu, T.-F. Guo, Effects of Ge-and Sb-doping and annealing on the tunable bandgaps of SnS films, Thin Solid Films, 584 (2015) 37-40.
18- K. Tang, S. Gu, J. Liu, J. Ye, S. Zhu, Y. Zheng, Effects of indium doping on the crystallographic, morphological, electrical, and optical properties of highly crystalline ZnO films, Journal of Alloys and Compounds, 653 (2015) 643-648.
19- A. Tubtimtae, M.-W. Lee, ZnO nanorods on undoped and indium-doped ZnO thin films as a TCO layer on nonconductive glass for dye-sensitized solar cells, Superlattices and Microstructures, 52 (2012) 987-996.
20- S.H. Chaki, M.D. Chaudhary, M. Deshpande, Effect of indium and antimony doping in SnS single crystals, Materials Research Bulletin, 63 (2015) 173-180.
21- A. Basak, A. Mondal, U.P. Singh, Impact of substrate temperature on the structural, optical and electrical properties of thermally evaporated SnS thin films, Materials Science in Semiconductor Processing, 56 (2016) 381-385.
22- S. Gedi, V.R.M. Reddy, J.-y. Kang, C.-W. Jeon, Impact of high temperature and short period annealing on SnS films deposited by E-beam evaporation, Applied Surface Science, 402 (2017) 463-468.
23- Y. Kawano, J. Chantana, T. Minemoto, Impact of growth temperature on the properties of SnS film prepared by thermal evaporation and its photovoltaic performance, Current Applied Physics, 15 (2015) 897-901.
24- J. Henry, K. Mohanraj, S. Kannan, S. Barathan, G. Sivakumar, Effect of selenium doping on structural and optical properties of SnS: Se thin films by electron beam evaporation method, The European Physical Journal-Applied Physics, 61 (2013).
25- N. Mathews, H.B. Anaya, M. Cortes-Jacome, C. Angeles-Chavez, J. Toledo-Antonio, Tin sulfide thin films by pulse electrodeposition: structural, morphological, and optical properties, Journal of The Electrochemical Society, 157 (2010) H337-H341.
26- N.P. Klochko, O.V. Lukianova, V.R. Kopach, I.I. Tyukhov, N.D. Volkova, G.S. Khrypunov, V.M. Lyubov, M.M. Kharchenko, M.V. Kirichenko, Development of a new thin film composition for SnS solar cell, Solar Energy, 134 (2016) 156-164.
27- A. Ghazali, Z. Zainal, M.Z. Hussein, A. Kassim, Cathodic electrodeposition of SnS in the presence of EDTA in aqueous media, Solar energy materials and solar cells, 55 (1998) 237-249.
28- B. Subramanian, C. Sanjeeviraja, M. Jayachandran, Cathodic electrodeposition and analysis of SnS films for photoelectrochemical cells, Materials Chemistry and Physics, 71 (2001) 40-46.
[29] R. Hayakawa, Y. Takano, Preparation of SnS films in chemical solution using microwave irradiation, Thin Solid Films, 636 (2017) 171-176.
30- C. Gao, H. Shen, L. Sun, Preparation and properties of zinc blende and orthorhombic SnS films by chemical bath deposition, Applied Surface Science, 257 (2011) 6750-6755.
31- H.Y. He, J. Fei, J. Lu, Optical and electrical properties of pure and Sn4+-doped n-SnS films deposited by chemical bath deposition, Materials Science in Semiconductor Processing, 24 (2014) 90-95.
32- U. Chalapathi, B. Poornaprakash, S.-H. Park, Growth and properties of cubic SnS films prepared by chemical bath deposition using EDTA as the complexing agent, Journal of Alloys and Compounds, 689 (2016) 938-944.
33- F. Jiang, H. Shen, C. Gao, B. Liu, L. Lin, Z. Shen, Preparation and properties of SnS film grown by two-stage process, Applied Surface Science, 257 (2011) 4901-4905.
34- A. Stadler, H.J. Schimper, U. Brendel, D. Topa, A. Basch, H. Dittrich, Analyzing UV/Vis/NIR spectra with the single-layer model—Sputtered SnS thin films I: Space–time dependencies, Thin Solid Films, 519 (2011) 7951-7958.
35- L.L. Cheng, M.H. Liu, M.X. Wang, S.C. Wang, G.D. Wang, Q.Y. Zhou, Z.Q. Chen, Preparation of SnS films using solid sources deposited by the PECVD method with controllable film characters, Journal of Alloys and Compounds, 545 (2012) 122-129.
36- G.G. Ninan, C.S. Kartha, K.P. Vijayakumar, Spray pyrolysed SnS thin films in n and p type: Optimization of deposition process and characterization of samples, Journal of Analytical and Applied Pyrolysis, 120 (2016) 121-125.
37- S. Polivtseva, A. Katerski, E. Kärber, I. Oja Acik, A. Mere, V. Mikli, M. Krunks, Post-deposition thermal treatment of sprayed SnS films, Thin Solid Films, 633 (2017) 179-184.
38- K. Santhosh Kumar, A. Gowri Manohari, C. Lou, T. Mahalingam, S. Dhanapandian, Influence of Cu dopant on the optical and electrical properties of spray deposited tin sulphide thin films, Vacuum, 128 (2016) 226-229.
39- K. Santhosh Kumar, C. Manoharan, S. Dhanapandian, A. Gowri Manohari, Effect of Sb dopant on the structural, optical and electrical properties of SnS thin films by spray pyrolysis technique, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 115 (2013) 840-844.
40- H. Kafashan, F. Jamali-Sheini, R. Ebrahimi-Kahrizsangi, R. Yousefi, Nanostructured SnS1−xTex thin films: Effect of Te concentration and physical properties, Journal of Alloys and Compounds, 681 (2016) 595-605.
41- W. Shirbeeny, W.E. Mahmoud, Synthesis and characterization of transparent optical gas sensor device made of indium oxide pyramid like nanoarchitectures, Sensors and Actuators B: Chemical, 191 (2014) 102-107.
42- R. Mariappan, T. Mahalingam, V. Ponnuswamy, Preparation and characterization of electrodeposited SnS thin films, Optik-International Journal for Light and Electron Optics, 122 (2011) 2216-2219.
43- S. Cheng, Y. He, G. Chen, Structure and properties of SnS films prepared by electro-deposition in presence of EDTA, Materials Chemistry and Physics, 110 (2008) 449-453.
44- S. Cheng, G. Chen, Y. Chen, C. Huang, Effect of deposition potential and bath temperature on the electrodeposition of SnS film, Optical materials, 29 (2006) 439-444.
45- T. Sajeesh, N. Poornima, C.S. Kartha, K. Vijayakumar, Unveiling the defect levels in SnS thin films for photovoltaic applications using photoluminescence technique, physica status solidi (a), 207 (2010) 1934-1939.
46- C.E. Benouis, M. Benhaliliba, Z. Mouffak, A. Avila-Garcia, A. Tiburcio-Silver, M. Ortega Lopez, R. Romano Trujillo, Y.S. Ocak, The low resistive and transparent Al-doped SnO2 films: p-type conductivity, nanostructures and photoluminescence, Journal of Alloys and Compounds, 603 (2014) 213-223.
_||_