مطالعه تجربی رفتار خزشی کامپوزیت Al2024/SiC تولید شده به روش اتصال نورد تجمعی
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوینعلی سهیلی مقدم 1 , حمیدرضا محمدیان سمنانی 2 , غلامرضا ابراهیمی 3
1 - کارشناسی ارشد، مهندسی مواد، دانشگاه سمنان، سمنان
2 - استادیار، مهندسی مواد، دانشگاه سمنان، سمنان
3 - دانشیار، مهندسی مواد، دانشگاه حکیم سبزواری، سبزوار
کلید واژه: کامپوزیت, نورد تجمعی, خزش, آلومینیم, تقویتکننده,
چکیده مقاله :
ویژگیهای منحصر به فردی نظیر مدول الاستیسیته و ضریب انبساط حرارتی بالا به همراه سهولت تولید و نیز وزن کم موجب شده تا کامپوزیتهای زمینه آلومینیمی مقاوم شده با ذرات سرامیکی در دهههای اخیر مورد توجه قرار گیرند. در این تحقیق، کامپوزیت Al2024/SiC به ازای مقادیر 1، 2 و 3 درصد مقاومساز به روش نورد تجمعی تولید شد. فرآیند تولید به گونهای بود که نمونهها در سیکل ابتدایی 60 درصد کاهش سطح مقطع و در سیکلهای بعدی (3 سیکل) 50 درصد کاهش سطح مقطع را تجربه کردند. خواص مکانیکی نمونهها شامل سختیسنجی و آزمایش خزش مطالعه شد. آزمون خزش تحت شرایط محدوده حرارتی C°350-250 و تنش MPa40 - 30 انجام شد. نتایج نشان داد کامپوزیت Al2024+1%SiC دارای سختی بالاتری است به طوری که میتوان چسبندگی مطلوب ورقهای آلومینیم به یکدیگر به علت حضور کسر حجمی پایینی از ذرات SiC را عامل آن دانست. افزون بر این، نتایج آزمون خزش حاکی از آن بود که عمر خزشی این کامپوزیت فراتر از سایر کامپوزیتهای تولیدی است. شایان ذکر است که عمر خزشی کلیه کامپوزیتهای تولیدی به طور قابل ملاحظهای کمتر از نمونه خام اولیه (Al2024-T3) اندازهگیری شد.
Excellent features including high elastic modulus and thermal expansion coefficient associated with low weight and the ability to manufacture with conventional techniques were developed Aluminium composites reinforced with cremic particles at recent decades. In this work, Al2024/SiC composites with different SiC percentages (1,2,3%) were produced by Accumulative Roll Bonding (ARB) process. In order to produce composite samples 60% reduction rolling were applied to the samples firstly and then rolled strips cutted out into two parts and again subjected to 50% reduction for 3 passes. Mechanical properties of samples were investigated. Creep tests were done at temperature and stress range about 250-350°C and 30-40 MPa respectively. According to the results, Al2024+1%SiC composite had higher hardness degree than the other composites because of appropriate adhesion of raw strips together due to lower volume of SiC powder in this composite and acceptable consistency of particles into the matrix. Moreover, creep life of this sample was higher than the other. It is obvious that the creep life of All composites produced were several times less than the Al2024-T3 original raw sample.
1- Tsuji, N. Toyoda, T. Minamino, Y. Koizumi, Y. Yamane, T. Komatsu, M. Kiritani, M., “Microstructural Change of Ultrafine-Grained Aluminum During High-Speed Plastic Deformation” Material Science and Engineerig A, Vol. 350, No. 1, pp. 108-116, 2003.
2- ASM International, ASM International. Handbook Committee, and ASM International. Alloy Phase Diagram Committee. Metals Handbook: Properties and selection. Vol. 2. Asm International, 1990.
3- Dieter, George Ellwood, and David J. Bacon. Mechanical metallurgy. Vol. 3. New York: McGraw-Hill, 1986.
4- Hansen, N. Huang, X. Ueji. R. Tsuji, N. “Structure and Strength After Large Strain Deformation” Materials Science and Engineering: A, Vol. 387, pp. 191-194, 2004.
5- Long, L. Nagai, K. and Yin, F. “Progress in Cold Roll Bonding of Metals” Science and Technology of Advanced Materials (2016).
6- Xing, Z. P. Kang, S. B. and Kim. H. W. “Structure and Properties of AA3003
Alloy Produced by Accumulative Roll Bonding Process” Journal of Materials
Science, Vol. 37.4, No. 4, pp. 717-722, 2002.
7- ن. نصریان و خ. رنجبر، "بررسی خواص مکانیکی و ریزساختاری کامپوزیت Al/Brass ساخته شده به روش اتصال نوردی تجمعی" فصلنامه علمی - پژوهشی مواد نوین،جلد3، شماره1، پاییز 1391
8- Lee, S.H. Saito, Y. Sakai, T. Utsonumia, H. “Texture Evolution During ARB of AlLi Alloy” Materials Science and Engineering A, Vol.325, pp. 228-235, 2002.
9- Huang, X. Tsuji, N. Hansen, N. Minaminoa, Y. “Microstructural Evolution During Accumulative Roll-Bonding of Commercial Purity Aluminum” Materials Science and Engineering A, Vol. 340, No. 1, pp. 265-271, 2003.
10- Lee, S.H. Aito, Y. Tsuji, N. Utsonumia, H. “Role of Shear Strain in Ultra-Grain Refinement by Accumulative Roll-Bonding (ARB) Process” Scripta Materialia, Vol. 46, No. 4, pp. 281-285, 2002.
11- Tsuji, N. Saito, Y. Utsunomiya H. and Tanigawa, S. “Ultra-Fine Grained Bulk Steel Produced by Accumulative Roll-Bonding (ARB) Process” Scripta Materialia, Vol. 40, No. 7, pp. 795-800, 1999.
12- Salmova, M. Homola, P. Karlika, M. “ Thermal Stability of Twin-Roll Cast Al-Fe-Mn-Si Sheets Accumulative Roll Bonded at Different Temperatures” Materials Science and Engineering A, Vol. 462, No. 1, pp.106-110, 2007.
13- Green, W. V. “Creep and Stress Rupture Testing” Measurement of Mechanical Properties, Part I. RF Bunshah Wiley-Interscience, New York, 1971.
14- Dorn, J. E. “Creep and recovery” American Society for Metals, Cleveland, pp. 255, 1957.
15- Kloc, L. Spigarelli, S. Cerri, E. Evangelista, E. Langdon, T. G. “Creep Behavior of an Aluminum 2024 Alloy Produced by Powder Metallurgy” Acta Materialia, Vol. 45, No. 2, pp. 529-540, 1997.
16- Spigarelli, S. Cabibbo, M. Evangelista, E. Langdon, T.G. “Creep Properties of an Al-2024 Composite Reinforced With SiC Particulates” Materials Science and Engineering A, Vol. 328, pp. 39-47, 2002.
17- Pasebani, S. Toroghinejad, M.R. “Nano-Grained 70/30 Brass Strip Produced by Accumulative Roll-Bonding (ARB)” Material Science and Engineering A, Vol.527, No. 3, pp. 491-197, 2010.
18- Bendersky, L. Rosen, A. and K. Mukherjee. A. “Creep and Dislocation Substructure” International Metals Reviews, 2013.
19- Zhu, S. J., Peng, L. M., Zhou, Q., Ma, Z. Y., Kucharova, K. and Cadek, J. “Creep behavior of an aluminium strengthened by fine aluminium carbide particles and reinforced by silicon carbide particulates-DS Al-SiC/Al4C3 composites”', Materials Science and Engineering A, Vol.268, pp. 236-245, 1999.
20- Bendersky, L. Rosen, A. and K. Mukherjee. A. “Creep and Dislocation Substructure” International Metals Reviews, Vol.30, , pp. 1-16, 1985.
21- P. Manrique, C.M. Jimenez, A. caballero, O.A.Ruano, F. Carreno “Evolution of the microstructure, texture and creep properties of the 7075 aluminium alloy during hot accumulative roll bonding” Materials Science and Engineering A, Vol. 606, PP.434-442, 2014.
22- P. Manrique, C.M. Jimenez, O.A.Ruano, F. Carreno “Effect of warm accumulative roll bonding on the evolution of microstructure, texture and creep properties in the 7075 aluminium alloy” Materials Science and Engineering A, Vol. 556, PP.287-294, 2012.
23- ASTM, E139-11. “Standard Test Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials” Annual book of ASTM standards, 2001.
24- Fullman, R. L. Carreker, R. P. and Fisher. J. C. “Simple Devices For Approximating Constant Stress During Tensile Creep Tests” Transactions of the American Institute of Mining and Metallurgical Engineers, Vol. 197.5, No. 5, pp. 657-659, 1953.
25- Chang, H. C. and Grant. N. J. “Inhomogeneity in Creep Deformation of Coarse-Grained High Purity Aluminum” Trans. AIME, Vol. 197, pp. 1175, 1953.
26- Hosseini Monnazah, A. Simchi, A. Seyed Reihani, S. M. “Creep Behavior of Hot Extruded Al-5%SiC Composite powder” Materials Science Forume, Vol. 534-536, pp. 861-864, 2007.
27- Parchoviansky, M. Galusek, D. Michalek, M. Savancarek, P. Kasiarova, M. Dusza, J. Hnatko, M. “Effect of the Volume Fraction of SiC on the Microstructure and Creep Behavior of Hot Pressed Al2O3/SiC Composites” Ceramics International, Vol. 40, No. 1, pp. 1807-1814, 2014.
28- Tjong, S.C. Ma, Z.Y. “High-Temperature Creep Behaviour of Powder-Metallurgy Aluminium Composites Reinforced With SiC Particles of Various Sizes” Composites Science and Technology, Vol. 59, No. 7, 1999.
29- Hao, S. M. Xie, J. P. Wang, A. Q. Wang, W. Y. Li, J. W. Sun, H. L. “Hot Deformation Behaviors of 35%SiCp/2024Al Metal Matrix Composites” Trans. Nonferrous Met. Soc. China, Vol. 24, No. 8, pp. 2468−2474. 2014.
_||_