بررسی اثر اندازه ذره بر پارامتر حجم به ازای اتم در نانوذرات اکسید تیتانیوم
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوین
1 - استادیار مهندسی و علم مواد، دانشگاه صنعتی شیراز.
کلید واژه: حجم به ازای اتم, شبیه سازی دینامیک مولکولی, نانوذرات اکسید تیتانیوم,
چکیده مقاله :
نانوذرات، یکی از عناصر اصلی در فناوری نانو محسوب میشوند. به دلیل نسبت بالای سطح به حجم نانوذرات، خواص و پارامترهای نانوذرات تفاوت قابل ملاحظهای با نمونه حجیم از خود نشان میدهند. یکی از این پارامترها، حجم نانوذرات است. در این پژوهش، تاثیر لایه آمورف سطحی بر پارامتر حجم در واحد اتم (Ω) نانوذرات TiO2 به روش دینامیک مولکولی مورد بررسی قرار گرفت. این پژوهش روی دو نوع حالت بلوری اکسید تیتانیوم، روتایل و آناتاز صورت گرفت. یک روش جدید برای تعیین تغییرات Ω در راستای شعاعی نانوذره پیشنهاد گردید. مشاهده شد که در ناحیه درونی نانو ذره که بلوری است مقدار Ω مستقل از فاصله شعاعی بوده و برابر با مقدار Ω برای اکسید تیتانیوم حجیم میباشد. با این حال، در لایه آمورف سطحی تغییرات شعاعی Ω مشاهده گردید و میانگین پارامتر Ω در لایه سطحی بزرگتر از ناحیه درونی بود. علاوه بر این، مشاهده گردید که میانگین حجم به ازای اتم نانوذرات TiO2 (aveΩ (بزرگتر از مقدار فاز با ابعاد حجیم میباشد. به منظور بررسی دقیقتر، تغییرات شعاعی عدد همسایگی یونهای تیتانیوم محاسبه شد. نتیجه گیری گردید که عدد همسایگی کمتر یونهای تیتانیوم در لایه آمورف سطحی عامل اصلی مقدار بیشتر میانگین حجم به ازای اتم نانوذرات TiO2میباشد.
Nanoparticles are considered as one of the most important building blocks of nanotechnology. Due to the high surface to bulk ratio of nanoparticles, most of their properties and parameters differ significantly from their bulk counter parts. One of these parameters is volume of nanoparticle. In the present work, molecular dynamics (MD) simulation was used to explore the effect of amorphous surface layer on volume-per-atom (Ω) of TiO2 nanoparticles. Two most common phases of TiO2, rutile and anatase, were investigated. A novel method was proposed for studying the radial variation of Ω from the center to the surface of nanopaticles. It was found that for atoms located in the crystalline core of TiO2 nanoparticles, the value of Ω is radial independent and is the same as that of bulk TiO2. However, in the amorphous surface layer, Ω showed radial variation, with its average value larger than that of crystalline core. Moreover, it was observed that the average volume-per-atom (Ωave) of TiO2 nanoparticles is larger that that of bulk TiO2. For a more detailed examination, the radial variation of coordination number (CN) of titanium ion, from the center to the surface of nanoparticle, was calculated. It was concluded that the lower CN of titanium ions located in the amorphous surface layer, than that of conventional value, i.e. 6, is responsible for larger Ωave of TiO2 nanoparticles.
1- X. Xiong, A. Busnaina, "Direct assembly of nanoparticles for large-scale fabrication of nanodevices and structures", J. Nanopart. Res., Vol. 10, pp. 947-954, 2008.
2- B. Tan, Y. Wu, "Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites", J. Phys. Chem. B, Vol. 110, pp. 15932-15938, 2006.
3- S.S. Kalanur, J. Seetharamappa, S.N. Prashanth, "Voltammetric sensor for buzepide methiodide determination based on TiO2 nanoparticle-modified carbon paste electrode", Colloids Surf. B Biointerfaces, Vol. 78, pp. 217-221, 2010.
4- مهرنوش مختاری مهر، محمد حسین شریعت و محمود پاک شیر، " بررسی خاصیت فتوکاتالیستی لایه نازک V doped TiO2 تهیه شده با روش سل-ژل" مواد نوین، جلد 2، صفحه 21-26، 1391.
5- V.N. Koparde, P.T. Cummings, "Molecular dynamics study of water adsorption on TiO2 nanoparticles", J. Phys. Chem. C, Vol. 111, pp. 6920-6926, 2007.
6- H. Zhang, B. Chen, J.F. Banfield, "Atomic structure of nanometer-sized amorphous TiO2", Phys. Rev. B., Vol. 78, pp. 214106(1-12), 2008.
7- V.N. Koparde, P.T. Cummings, "Sintering of titanium dioxide nanoparticles: a comparison between molecular dynamics and phenomenological modeling", J. Nanopart. Res., Vol. 10, pp. 1169-1182, 2008.
8- V.V. Hoang, H. Zung, N.H.B. Trong, "Structural properties of amorphous TiO2 nanoparticles", Eur. Phys. J. D, Vol. 44, pp. 515–524, 2007.
9- W. Yan, S. Li, Y. Zhang, Q. Yao, S.D. Tse, "Effects of dipole moment and temperature on the interaction dynamics of titania nanoparticles during agglomeration", J. Phys. Chem. C, Vol. 114, pp. 10755–10760, 2010.
10- V.N. Koparde, P.T. Cummings, Molecular dynamics study of water adsorption on TiO2 nanoparticles, J. Phys. Chem. C, Vol. 111, pp. 6920-6926, 2007.
11- H. Zhang, B. Chen, J.F. Banfield, Atomic structure of nanometer-sized amorphous TiO2, Phys. Rev. B, Vol. 78, pp. 214106(1-12), 2008.
12- V.N. Koparde, P.T. Cummings, Sintering of titanium dioxide nanoparticles: a comparison between molecular dynamics and phenomenological modeling, J. Nanopart. Res., Vol. 10, pp. 1169-1182, 2008.
13- V.V. Hoang, H. Zung, N.H.B. Trong, Structural properties of amorphous TiO2
nanoparticles, Eur. Phys. J. D, Vol. 44, pp. 515–524, 2007.
14- P.K. Naicker, P.T. Cummings, H. Zhang, J.F. Banfield, “Characterization of titanium dioxide nanoparticles using molecular dynamics simulations, J. Phys. Chem. B, Vol. 109, pp. 15243-15249, 2005.
15- A. Mashreghi, M.M. Moshksar, "Molecular dynamics simulation of the effect of nanotube diameter on heat pulse propagation in thin armchair single walled carbon nanotubes", Comput. Mater. Sci., Vol. 50, pp. 2814-2821, 2011.
16- A. Mashreghi, M.M. Moshksar, "Investigating the effect of chirality on structural parameters of chiral single-walled carbon nanotubes by molecular dynamics simulation", Comput. Mater. Sci., Vol. 50, pp. 934-938, 2011.
17- A. Mashreghi, M.M. Moshksar, "Bond lengths and bond angles of armchair single-walled carbon nanotubes through molecular dynamics and potential energy curve approaches", Comput. Mater. Sci., Vol. 49, pp. 871-875, 2010.
18- A. Mashreghi, "Determining the volume thermal expansion coefficient of TiO2 nanoparticle by molecular dynamics simulation", Computational Materials Science, Vol. 62, pp. 60–64, 2012.
19- M. Matsui, M. Akaogi, "Molecular dynamics simulation of the structural and physical properties of the four polymorphs of TiO2", Mol. Simul., Vol. 6, pp. 239-244, 1991.
20- A.V. Kazakov, E.S. Shpiro, T.V. Voskoboinikov, "Application of Debye function analysis to particle size and shape determination in Ir/SiO2 catalysts", J. Phys. Chem., Vol. 99, pp. 8323-8327, 1995.
21- C.B. Carter, M.G. Norton, "Ceramic Materials: Science and Engineering", Springer, New York, 2007.
_||_