اثرات تغییرات اقلیم و انتشار دی اکسید کربن بر تولید گندم: مطالعه موردی استان همدان
محورهای موضوعی : فصلنامه علمی -پژوهشی تحقیقات اقتصاد کشاورزیاحمد سلطانی ذوقی 1 , محمود حاجی رحیمی 2
1 - گروه اقتصاد کشاورزی، دانشکده کشاورزی، دانشگاه شیرار، شیراز، ایران.
2 - گروه اقتصاد کشاورزی، دانشکده کشاورزی، دانشگاه کردستان، سنندج، ایران.
کلید واژه: همدان, ARDL, ECM, تغییر اقلیم, تولید گندم, انتشار گازهای گلخانهای,
چکیده مقاله :
مقدمه و هدف: افزایش انتشار گازهای گلخانه ای و تغییرات اقلیمیدر سالیان اخیر به گسترش خشکسالیهای پیاپی و آسیب پذیری بیشتر تولید محصولات کشاورزی منجر شده است. در استان همدان، گرما و خشکی بیشتر ناشی از تغییرات اقلیم و انتشار گازهای گلخانه ای موجب تبخیر بیشتر آب و افزایش نیاز آبی محصولات شده و در نتیجه ناپایداری و آسیب پذیری تولید محصولات کشاورزی را افزایش داده است. هدف این مطالعه، بررسی تاثیر متغیرهای انتشار دی اکسید کربن، دما، میانگین بارش، آب مصرفی، تغییرات تکنولوژی و سایر متغیرهای مهم موثر بر تولید گندم به عنوان یکی از محصولات اصلی و استراتژیک استان همدان است، تا از این راه ارتباط متغیرهای مؤثر بر و متأثر از تغییرات اقلیمی با مقدار تولید این محصول برآورد و تجزیه و تحلیل شود. مواد و روشها: برای این منظور، یک الگوی اقتصاد سنجی خودتوضیح با وقفه های توزیعی (ARDL) با استفاده از داده های سری زمانی سالهای 1356 تا 1396 بمنظور بررسی آثار کوتاه مدت و بلندمدت متغیرهای اقلیمی و تکنیکی بر تغییرات تولید گندم در استان همدان، تدوین و برآورد شد. یافتهها: نتایج نشان داد که هرچند با افزایش سطح انتشار دی اکسید کربن، سطح تولید گندم در استان همدان با کاهش مواجه میشود، اما این کاهش در دوره مورد بررسی محسوس و معنی دار نبوده است. همچنین، نتایج برآورد الگو حاکی از آن است که متغیر اقلیمیتغییرات بارش بر تولید گندم در استان همدان تاثیر گذار بوده، اما متغیرهای تغییرات دمایی و تکنولوژیکی بر تولید گندم استان همدان تاثیر معنیداری نداشته اند. بحث و نتیجهگیری: از نتایج بالا میتوان استناط کرد که اثر منفی انتشار گازهای گلخانه ای بر تولید گندم در استان همدان شروع شده است، باوجود این هنوز این تأثیر منفی بزرگ و معنی دار نیست. همچنین، نتایج الگوی تصحیح خطا نشان داد که هر نوع شوک منفی برای تولید گندم در کوتاه مدت با استفاده از سطح زیر کشت، کود و مهمتر از همه اعتبارات کشاورزی تنظیم شده و تغییرات عوامل آب و اعتبارات کشاورزی در سال های گذشته، باعث تشدید شوکهای منفی و کاهش اثرات شوک های مثبت شده است.
Introduction: The increase in greenhouse gas emissions and climate change in recent years has led to frequent droughts and increased vulnerability in agricultural production. In Hamedan province, heat and dryness resulting from climate change and greenhouse gas emissions have increased the evaporation of water and the water requirements of crops, leading to instability and vulnerability in agricultural production. The aim of this study is to investigate the impact of variables such as carbon dioxide emissions, temperature, average precipitation, water consumption, technological changes, and other important variables on wheat production as one of the main strategic products in Hamedan province. This will help estimate and analyze the relationship between the variables affecting and affected by climate change and the level of wheat production. Materials and Methods: To this end, an autoregressive distributed lag (ARDL) econometric model was developed and estimated using time series data from 1977 to 2017 to examine the short- and long-term effects of climatic and technical variables on changes in wheat production in Hamedan province. Findings: The results showed that although increasing carbon dioxide emissions reduce wheat production in Hamedan province, this reduction was not significant during the period under study. The estimation results also indicated that the climate variable of changes in precipitation had a significant effect on wheat production in Hamedan province, but changes in temperature and technological variables did not have a significant effect on wheat production. Conclusion: It can be inferred from these results that the negative effect of greenhouse gas emissions on wheat production in Hamedan province has begun, but this negative effect is not yet significant. The error correction model results also showed that any negative shock to wheat production in the short term is managed through adjusting the level of cultivation, fertilizer, and, most importantly, agricultural credits, and that changes in water and agricultural credits exacerbate negative shocks and reduce the responsiveness of wheat production to these shocks.
1. Adegbeye MJ, Ravi Kanth Reddy P, Obaisi AI, Elghandour MMMY, Oyebamiji KJ, Salem AZM, Morakinyo-Fasipe OT, Cipriano-Salazar M, Camacho-Díaz LM. Sustainable agriculture options for production, greenhouse gasses and pollution alleviation, and nutrient recycling in emerging and transitional nations - An overview. Journal of Cleaner Production, 242, 118319. 2020,https://doi.org/https:// doi.org/10.1016/j.jclepro.2019.118319.
2. Ahmadi SH, Solgi S, Sepaskhah AR. Quinoa: A super or pseudo-super crop? Evidences from evapotranspiration, root growth, crop coefficients, and water productivity in a hot and semi-arid area under three planting densities. Agricultural Water Management, 225, 105784. 2019. https://doi.org/https://doi.org/10.1016/j.agwat.2019.105784 . [In Persian].
3. Baig IA, Ahmed F, Salam MA, Khan SM. An assessment of Climate change and Crop Productivity in India: A Multivariate Cointegration Framework. 2020.
4. Balouchi HR, Modarres Sanavy SAM, Emam Y, Barzegar M. Effect of Water Deficit, Ultraviolet Radiation and Carbon Dioxide Enrichment on Quantitative Traits of Durum Wheat (Triticum turgidum L. var. Durum Desf.). Iranian Journal of Field Crop Science, 2009, 40(3), 64-81. https://ijfcs.ut.ac.ir/article_19857_ d2bc983b588576386bfc9e6ebff159ca.pdf. [In Persian].
5. Binuomote S, Ajetomobi J, Omodunbi C. Application of autoregressive distributed lags (ARDL) modelling approach to cointegration in econometric estimation of wheat imports demand in Nigeria (1970 2008). Advances in Arts, Social Sciences and Education Research, 2012, 2(5), 168-175.
6. Brown RL, Durbin J, Evans JM. Techniques for testing the constancy of regression relationships over time. Journal of the Royal Statistical Society: Series B (Methodological), 1975, 37(2), 149-163.
7. Duasa J. Determinants of Malaysian trade balance: An ARDL bound testing approach. Global Economic Review, 2007, 36(1), 89-102.
8. Frimpong Magnus J, Oteng-Abayie EF. Bounds testing approach: an examination of foreign direct investment, trade, and growth relationships. American Journal of Applied Sciences, 2006, 3 (11), 2079-2085.
9. Harizanova-Metodieva T, Harizanova-Bartos H. ARDL Models Concerning Cattle Number and Cow Milk Production in Bulgaria. Economic Alternatives, 2019, (1), 63-76.
10. Janjua PZ, Samad G, Khan N. Impact of Climate Change on Wheat Production: A Case Study of Pakistan. Pakistan Development Review 2010, 49(4II):799-822.DOI: 10.30541/v49i4IIpp.799-822.
11. Khalili Agdam N. Simulation of some optimal traits related to rain-fed wheat yield at urmia conditions. Journal of Crop Ecophysiology, 2018, 12(47 (3)), 377-392. [In Persian].
12. Motha RP, Baier W. Impacts of Present and Future Climate Change and Climate Variability on Agriculture in the Temperate Regions: North America. Climatic Change 2005, 70, 137–164. https://doi.org/10.1007/s10584-005-5940-1
13. Mosavi SH, Soltani S, Khalilian S. Coping with climate change in agriculture: Evidence from Hamadan-Bahar plain in Iran. Agricultural Water Management, 241, 106332. 2020, https://doi.org/https:// doi.org/ 10.1016/j.agwat.2020.106332. [In Persian].
14. Parhizkari A, Sabuhi M. Effects of Technology Development and Mechanization on Agricultural Production in Qazvin Province. Journal of Agricultural Economics Researches, 2014, 5(4), 1-23. https://www.magiran.com/paper/1264087 . [In Persian].
15. Pesaran MH, Shin Y. An autoregressive distributed-lag modelling approach to cointegration analysis. Econometric Society Monographs, 1998, 31, 371-413.
16. Pesaran MH, Shin Y, Smith RJ. Bounds testing approaches to the analysis of level relationships. Journal of applied econometrics, 2001, 16(3), 289-326.
17. Pourghasemian N, Moradi R. Greenhouse Gases Emission and Global Warming Potential as Affected by Chemical Inputs for Main Cultivated Crops in Kerman Province: - Horticultural Crops. Journal Of Agroecology, 2017, 9(3), 689-704. doi: 10.22067/jag.v9i3.42309
18. Rezaei Chermahini M, Yousefi H, Mansouri Z, Haghighi p. Investigation of Climate Change Occurrence and its Impact on Wheat Growth (Case Study: Fars Province). Iranian Journal of Eco Hydrology, 2020, 7(1), 1-15. https://www.magiran.com/paper/2112375 . [In Persian].
19. Soltani-Zoghi A, Ghaderzadeh H. The relationship between agricultural production and environmental indices with emphasis on climate change. Journal of Agricultural Meteorology, 2020, 8(1), 62-74.
20. Soltani-Zoghi A, Haji-Rahimi M. Estimation and comparison the exploitation amount from groundwater resources under alternative exploitation models and its effect on sustainability: the study of Bahar-Hamedan Plain. Journal of Agricultural Economics Researches, 2018, 10(4), 173-194. [In Persian].
21. Soltani S, Mosavi SH, Khalilian S. Effects of CO2 Emissions on Crop Pattern in Hamedan-Bahar Plain. Agricultural Economic and Development, 2016, 24(93), 137-165. https://www.magiran .com/paper/ 1561634. [In Persian].
22. Taghavi A, Pahlavani M. Saving, Investment and Economic Growth in Iran: Results from ARDL Model and Cointegration approach with Structural Breaks. Journal of Applied Economics Studies in Iran, 2018, 7(25), 201-225. https://doi.org/10.22084/aes. 2017.14380.2513 . [In Persian].
23. Vatankhah T, Moosavi SN, Tabatabaei SM. The economic impacts of climate change on agriculture in Iran: a CGE model analysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020, 42(16), 1935-1949.
.
_||_