یک مبدل بدون ترانسفورمر بسیار افزاینده جدید با ریپل جریان ورودی پایین برای سیستم های فتوولتائیک
محورهای موضوعی : مهندسی برق و کامپیوترکرار سعد فرج 1 , مجید دلشاد 2 , ومیض ریاض عبدالعظیم 3 , محمد روح اله یزدانی 4 , بهادر فانی 5
1 - دانشکده مهندسی برق، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران
2 - دانشکده مهندسي برق، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران
3 - دانشکده مهندسی، دانشگاه بغداد، بغداد، عراق
4 - دانشکده مهندسي برق، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران
5 - دانشکده مهندسي برق، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران
کلید واژه: مبدل¬های بسیار افزاینده, کلیدزنی نرم, مدولاسیون پهنای پالس, کلیدزنی در ولتاژ صفر,
چکیده مقاله :
در این مقاله یک مبدل بسیار افزاینده با بهره ولتاژ بسیار بالا و ریپل جریان ورودی پایین برای سیستمهای فوتو ولتاییک ارایه شده است. از ویژگی اصلی مبدل عدم استفاده از سلفهای ترویج شده و افزایش بهره با استفاده از خازنهای سوییچ شده می باشد لذا حجم و وزن مبدل بسیار کاهش یافته است. مدار کمکی شرایط کلیدزنی در ولتاژ صفر را برای سوییچهای اصلی و کمکی فراهم کرده است و به علت تعداد المان پایین راندمان مبدل بطور محسوس بهبود یافته است. ریپل جریان ورودی مبدل بسیار پایین است که موجب می گردد دنبال کردن ماکزیمم توان از سلولهای فوتوولتایک ساده گردد. به علت افزایش بهره و کاهش استرس ولتاژ روی سوییچها امکان استفاده از سوییچها با مقاومت پایینتر فراهم گشته و تلفات هدایتی متعاقبا کاهش می یابد. همچنین به خاطر عملکرد مکمل سوییچها طراحی مدار کنترل ساده می باشد و کنترل مبدل بصورت PWM باقی می ماند. مبدل در توان 110 وات و خروجی 330 ولت در نرم افزار PSPICE شبیه سازی شده است و در نهایت یک نمونه عملی از آن ساخته شده و نتایج آزمایشگاهی نتایج شبیه سازی را تایید می کنند.
In this paper, a step-up converter with very high voltage gain and low input current ripple for photovoltaic systems is presented. One of the main features of the converter is not using coupled- inductors and increasing gain by using switched-capacitors, so the volume and weight of the converter has been greatly reduced. The auxiliary circuit has provided zero voltage switching conditions for the main and auxiliary switches, and due to the low number of elements, the efficiency of the converter has been significantly improved. The input current ripple of the converter is very low, which makes it easy to track the maximum power point from the photovoltaic cells. Due to the increase in gain and decrease in voltage stress on the switches, it is possible to use switches with lower RDS(on), and conduction losses are subsequently reduced. Also, due to the complementary function of the switches, the design of the control circuit is simple and the control of the converter remains as PWM. The converter is simulated in PSPICE software with a power of 110 W and an output of 330 V, and finally a prototype is made of it, and the laboratory results confirm the simulation results.
[1] J. M. Carrasco et al., "Power-electronic systems for the grid integration of renewable energy sources: A survey," IEEE Transactions on industrial electronics, vol. 53, no. 4, pp. 1002-1016, 2006, doi: 10.1109/TIE.2006.878356.
[2] Q. Li and P. Wolfs, "A review of the single phase photovoltaic module integrated converter topologies with three different DC link configurations," IEEE Transactions on power electronics, vol. 23, no. 3, pp. 1320-1333, 2008, doi: 10.1109/TPEL.2008.920883.
[3] J. T. Bialasiewicz, "Renewable energy systems with photovoltaic power generators: Operation and modeling," IEEE Transactions on industrial Electronics, vol. 55, no. 7, pp. 2752-2758, 2008. doi:10.1109/TIE.2008.920583.
[4] K.-C. Tseng, C.-C. Huang, and W.-Y. Shih, "A high step-up converter with a voltage multiplier module for a photovoltaic system," IEEE transactions on power electronics, vol. 28, no. 6, pp. 3047-3057, 2012, doi: 10.1109/TPEL.2012.2217157.
[5] V. V. Scarpa, S. Buso, and G. Spiazzi, "Low-complexity MPPT technique exploiting the PV module MPP locus characterization," IEEE transactions on industrial electronics, vol. 56, no. 5, pp. 1531-1538, 2008, doi: 10.1109/TIE.2008.2009618.
[6] W. Li, L. Fan, Y. Zhao, X. He, D. Xu, and B. Wu, "High-step-up and high-efficiency fuel-cell power-generation system with active-clamp flyback–forward converter," IEEE transactions on Industrial Electronics, vol. 59, no. 1, pp. 599-610, 2011, doi: 10.1109/TIE.2011.2130499.
[7] Y. Zheng, B. Brown, W. Xie, S. Li, and K. Smedley, "High step-up DC–DC converter with zero voltage switching and low input current ripple," IEEE Transactions on Power Electronics, vol. 35, no. 9, pp. 9416-9429, 2020, doi: 10.1109/TPEL.2020.2968613.
[8] Q. Zhao and F. C. Lee, "High-efficiency, high step-up DC-DC converters," IEEE Transactions on Power Electronics, vol. 18, no. 1, pp. 65-73, 2003, doi: 10.1109/TPEL.2002.807188.
[9] W. Li and X. He, "Review of nonisolated high-step-up DC/DC converters in photovoltaic grid-connected applications," IEEE Transactions on industrial electronics, vol. 58, no. 4, pp. 1239-1250, 2010, doi: 10.1109/TIE.2010.2049715.
[10] C.-T. Pan, C.-F. Chuang, and C.-C. Chu, "A novel transformer-less adaptable voltage quadrupler DC converter with low switch voltage stress," IEEE Transactions on Power Electronics, vol. 29, no. 9, pp. 4787-4796, 2013, doi: 10.1109/TPEL.2013.2287020.
[11] S. Chakraborty, M. G. Simões, and W. E. Kramer, "Power electronics for renewable and distributed energy systems," A Sourcebook of Topologies, Control and Integration, vol. 99, p. 100, 2013.
[12] L. Huber and M. M. Jovanovic, "A design approach for server power supplies for networking applications," in APEC 2000. Fifteenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No. 00CH37058), 2000, vol. 2: IEEE, pp. 1163-1169, doi: 10.1109/APEC.2000.822834.
[13] T.-F. Wu and T.-H. Yu, "Unified approach to developing single-stage power converters," IEEE Transactions on Aerospace and Electronic Systems, vol. 34, no. 1, pp. 211-223, 1998, doi: 10.1109/7.640279.
[14] B.-R. Lin, H.-H. Lu, and Y.-L. Hou, "Single-phase power factor correction circuit with three-level boost converter," in ISIE'99. Proceedings of the IEEE International Symposium on Industrial Electronics (Cat. No. 99TH8465), 1999, vol. 2: IEEE, pp. 445-450, doi: 10.1109/ISIE.1999.798653.
[15] T.-J. Liang and K. Tseng, "Analysis of integrated boost-flyback step-up converter," IEE Proceedings-Electric Power Applications, vol. 152, no. 2, pp. 217-225, 2005.
[16] D. Vinnikov and I. Roasto, "Quasi-Z-source-based isolated DC/DC converters for distributed power generation," IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 192-201, 2010, doi: 10.1109/TIE.2009.2039460.
[17] M. Nymand and M. A. Andersen, "High-efficiency isolated boost DC–DC converter for high-power low-voltage fuel-cell applications," IEEE Transactions on industrial electronics, vol. 57, no. 2, pp. 505-514, 2009, doi: 10.1109/TIE.2009.2036024.
[18] G. Wu, X. Ruan, and Z. Ye, "Nonisolated high step-up DC–DC converters adopting switched-capacitor cell," IEEE Transactions on Industrial Electronics, vol. 62, no. 1, pp. 383-393, 2014, doi: 10.1109/TIE.2014.2327000.
[19] W. Li and X. He, "Review of nonisolated high-step-up DC/DC converters in photovoltaic grid-connected applications," IEEE Transactions on industrial electronics, vol. 58, no. 4, pp. 1239-1250, 2010, doi: 10.1109/TIE.2010.2049715.
[20] Q. Zhao and F. C. Lee, "High performance coupled-inductor DC-DC converters," in Proc. IEEE APEC, 2003, vol. 3, pp. 109-113, doi: 10.1109/APEC.2003.1179184.
[21] E. Adib and H. Farzanehfard, "Zero-voltage transition current-fed full-bridge PWM converter," IEEE Transactions on Power Electronics, vol. 24, no. 4, pp. 1041-1047, 2009, doi: 10.1109/TPEL.2008.2011553.
[22] Y. Zheng, B. Brown, W. Xie, S. Li, and K. Smedley, "High step-up DC–DC converter with zero voltage switching and low input current ripple," IEEE Transactions on Power Electronics, vol. 35, no. 9, pp. 9416-9429, 2020, doi: 10.1109/TPEL.2020.2968613.
[23] M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg, and B. Lehman, "Step-up DC–DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications," IEEE transactions on power electronics, vol. 32, no. 12, pp. 9143-9178, 2017, doi: 10.1109/TPEL.2017.2652318.
[24] G. Palumbo and D. Pappalardo, "Charge pump circuits: An overview on design strategies and topologies," IEEE Circuits and Systems Magazine, vol. 10, no. 1, pp. 31-45, 2010, doi: 10.1109/MCAS.2009.935695.
[25] J. A. Starzyk, Y.-W. Jan, and F. Qiu, "A DC-DC charge pump design based on voltage doublers," IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 48, no. 3, pp. 350-359, 2001, doi: 10.1109/81.915390.
[26] M. D. Seeman and S. R. Sanders, "Analysis and optimization of switched-capacitor DC–DC converters," IEEE transactions on power electronics, vol. 23, no. 2, pp. 841-851, 2008. doi:10.1109/TPEL.2007.915182
[27] M. S. Makowski, "Realizability conditions and bounds on synthesis of switched-capacitor DC-DC voltage multiplier circuits," IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 44, no. 8, pp. 684-691, 1997, doi: 10.1109/81.611263.
[28] Y. Lei and R. C. N. Pilawa-Podgurski, "A general method for analyzing resonant and soft-charging operation of switched-capacitor converters," IEEE Transactions on Power Electronics, vol. 30, no. 10, pp. 5650-5664, 2014, doi: 10.1109/TPEL.2014.2377738.
[29] H. S.-H. Chung, "Design and analysis of a switched-capacitor-based step-up DC/DC converter with continuous input current," IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 46, no. 6, pp. 722-730, 1999, doi: 10.1109/81.768828.
[30] B. W. Williams, "Unified synthesis of tapped-inductor DC-to-DC converters," IEEE Transactions on Power Electronics, vol. 29, no. 10, pp. 5370-5383, 2013, doi: 10.1109/TPEL.2013.2291561.
[31] T.-F. Wu, Y.-S. Lai, J.-C. Hung, and Y.-M. Chen, "Boost converter with coupled inductors and buck–boost type of active clamp," IEEE Transactions on Industrial Electronics, vol. 55, no. 1, pp. 154-162, 2008, doi: 10.1109/TIE.2007.903925.
[32] S. Shabani, M. Delshad, R. Sadeghi, and H. H. Alhelou, "A high step-up PWM non-isolated DC-DC converter with soft switching operation," IEEE Access, vol. 10, pp. 37761-37773, 2022. doi: 10.1109/ACCESS.2022.3163146.