بهینهسازی سبد سرمایهگذاری با پارامترهای فازی با درنظر گرفتن ارزش درمعرض ریسک و تناسب با شاخصهای تحمل ریسک و تمایل به ریسک برای سرمایهگذاران حقیقی
محورهای موضوعی : مهندسی مالیعلی نمکی 1 , سعید شیرکوند 2 , امیرسینا جیرفتی 3
1 - گروه مدیریت مالی، دانشکده مدیریت، دانشگاه تهران، تهران، ايران
2 - گروه مدیریت مالی، دانشکده مدیریت، دانشگاه تهران، تهران، ایران
3 - گروه مهندسی مالی، پردیس بینالمللی کیش، دانشگاه تهران، تهران، ایران
کلید واژه: بهینهسازی سبد سرمایهگذاری, ارزش در معرض ریسک, ملاحظات تناسب در سرمایهگذاری, منطق فازی در مدیریت سرمایهگذاری,
چکیده مقاله :
پژوهش حاضر به مسئله بهینهسازی سبد سرمایهگذاری پرداخته و هدف از آن بدست آوردن مدلی برای درنظر گرفتن همزمان موضوع بهینگی و تناسب با شاخصهای تحمل و تمایل به ریسک برای سرمایهگذار حقیقی در محیط غیرقطعی میباشد. بدین منظور از اعدادZ که از مباحث نوین منطق فازی بوده و شامل یک جفت عدد فازی میباشد، برای مدلسازی عدم قطعیت در دادههای ورودی بهره گرفته شده است. همچنین، از سنجه ارزش در معرض ریسک جهت اندازهگیری ریسک پرتفوی استفاده شده و رابطهای جهت محاسبه این سنجه از طریق نظریه اعتبار فازی توسعه داده شده است. به منظور تناسب با شاخصهای تحمل و تمایل به ریسک، استفاده از شاخصهای جمعیت شناختی سرمایهگذاران حقیقی از یک سو و خوشهبندی داراییها با استفاده از روش K-میانگین از سوی دیگر مورد استفاده قرار گرفته است. به منظور پیادهسازی و تست مدل نیز از دادههای ۵۰ شرکت فعالتر بورس اوراق بهادار تهران حدفاصل سال ۱۳۹۹ تا سال ۱۴۰۲بهره گرفته شده است. نتایج تست مدل حاکی از آن است که اضافه نمودن موضوع تناسب میتواند سبد سرمایهگذاری را برای سرمایهگذاران با ویژگیهای ریسک متفاوت شخصیسازی نماید. استفاده از سایر روشهای خوشهبندی داراییها و همچنین درنظر گرفتن مدل به صورت چنددورهای میتواند موضوع تحقیقات آتی باشد.
The present study addresses the issue of portfolio optimization, aiming to develop a model that simultaneously considers optimality and suitability with the risk tolerance and risk-taking indices for retail investors in an uncertain environment. To this end, Z-numbers, which are a recent advancement in fuzzy logic and consist of a pair of fuzzy numbers, are utilized to model the uncertainty in input data. Additionally, the Value at Risk (VaR) is employed to measure portfolio risk, and a formula for calculating this metric is developed through the fuzzy credibility theory. To align with risk tolerance and risk-taking indices, demographic indicators of individual investors are considered, along with the clustering of assets using the K-means method. For the implementation and testing of the model, data from the 50 most active companies listed on the Tehran Stock Exchange between the beginning of 1399 and the end of 1402 were used. The model testing results indicate that incorporating the suitability consideration can personalize the investment portfolio for investors with different risk characteristics. Future research could explore the use of other asset clustering methods and consider the model in a multi-period framework.
1) ابراهیمی سروعلیا, محمد حسن، صابونچی, امین. (1398). نقش عوامل جمعیت شناختی در تبیین تحمل ریسک سرمایه گذاران حقیقی و رفتار ریسک پذیری آنان. دانش سرمایهگذاری،۸(۳۲)، ۲۱۷-۲۳۴.
2) ابراهیمی, سیدبابک، جیرفتی, امیرسینا. (1395). بررسی استفاده از نظریه اعتبار فازی در سنجش ارزش در معرض ریسک. فصلنامه علمی پژوهشی اقتصاد مقداری، ۱۳(۳)،۱-۲۴.
3) جیرفتی, امیرسینا, نجفی,امیرعباس.(1396). بهینهسازی سبد سرمایهگذاری به وسیله ارزش در معرض ریسک تحت نظریه اعتبار با رویکرد اعدادZ. مهندسی مالی و مدیریت اوراق بهادار, 30(8), 95-113.
4) Behera, J., Pasayat, A. K., Behera, H., & Kumar, P. (2023). Prediction based mean-value-at-risk portfolio optimization using machine learning regression algorithms for multi-national stock markets. Engineering Applications of Artificial Intelligence, 120, 105843.
5) Campbell, R., Huisman, R., & Koedijk, K. (2001). Optimal portfolio selection in a Value-at-Risk framework. Journal of Banking & Finance, 25(9), 1789-1804.
6) Carlsson, C., Fullér, R., & Majlender, P. (2002). A possibilistic approach to selecting portfolios with highest utility score. Fuzzy sets and systems, 131(1), 13-21.
7) Chen, L. H., & Huang, L. (2009). Portfolio optimization of equity mutual funds with fuzzy return rates and risks. Expert Systems with Applications, 36(2), 3720-3727.
8) EBRAHIMI, S. B., & JIROFTI, A. (2016). Investigating of using fuzzy credibility theory for measuring value at risk.
9) Embrechts, P., McNeil, A.J., Straumann, D, (2002). Correlation and dependence in risk management Properties and pitfalls. In: Dempster, M. (Ed.). Risk Management: Value at Risk and Beyond. Cambridge University Press, Cambridge. 176–223.
10) Fama, E., (1965). The behavior of stocks market prices. J. Bus, 38, 34–105.
11) Fang, Yong, and Shouyang Wang. (2006). An interval semi-absolute deviation model for portfolio selection." International Conference on Fuzzy Systems and Knowledge Discovery. Berlin, Heidelberg: Springer Berlin Heidelberg.
12) Gaivoronski, A. A., & Pflug, G. (2005). Value-at-risk in portfolio optimization: properties and computational approach. Journal of risk, 7(2), 1-31.
13) Gupta, Pankaj, et al. (2014). Suitability Considerations in Multi-criteria Fuzzy Portfolio Optimization-I. Fuzzy Portfolio Optimization: Advances in Hybrid Multi-criteria Methodologies: 187-222.
14) Gupta, L.C., Jain, N., Choudhury, U.K., Gupta, S., Sharma, R., Kaushik, P., Chopra, M., Tyagi, M.K., Jain, S.(2005): Indian Household Investors Survey. Society for Capital Market Research & Development, New Delhi.
15) Gupta, P., Inuiguchi, M., Mehlawat, M. K., & Mittal, G. (2013). Multiobjective credibilistic portfolio selection model with fuzzy chance-constraints. Information Sciences, 229, 1-17.
16) Hosking, J.R.M., Bonti, G., Siegel, D. (2000), Beyond the lognormal Risk. 13 (5), 59–62.
17) Jirofti, A., & Najafi, A. (2017). Investment portfolio optimization using value at risk under credibility theory with Z-numbers approach.
18) Kamil, A. A., & Ibrahim, K. (2007). Mean-absolute deviation portfolio optimization problem. Journal of Information and Optimization Sciences, 28(6), 935-944.
19) Konno, H., & Yamazaki, H. (1991). Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market. Management science, 37(5), 519-531.
20) Lai, K. K., Wang, S. Y., Xu, J. P., Zhu, S. S., & Fang, Y. (2002). A class of linear interval programming problems and its application to portfolio selection. IEEE Transactions on Fuzzy Systems, 10(6), 698-704.
21) Lindquist, W. B., Rachev, S. T., Hu, Y., & Shirvani, A. (2022). Advanced REIT Portfolio Optimization: Innovative Tools for Risk Management (Vol. 30). Springer Nature.
22) Liu, B., & Liu, Y. K. (2002). Expected value of fuzzy variable and fuzzy expected value models. IEEE transactions on Fuzzy Systems, 10(4), 445-450.
23) Mandelbrot, B. (1972). Certain speculative prices. The Journal of Business, 45(4), 542-543.
24) Markowitz, H. (1952). Portfolio selection. The journal of finance, 7(1), 77-91.
25) Markowitz, H. M. (1991). Foundations of portfolio theory. The journal of finance, 46(2), 469-477.
26) McNeil, A.J., Frey, R., (1999). Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach. Working paper Risk Lab, ETH Zurich.
27) Meng, X., & Shan, Y. (2021, July). A fuzzy mean semi-absolute deviation-semi-variance-proportional entropy portfolio selection model with transaction costs. In 2021 40th Chinese Control Conference (CCC) (pp. 8673-8678). IEEE.
28) Moghadam, M. A., Ebrahimi, S. B., & Rahmani, D. (2020). A constrained multi-period robust portfolio model with behavioral factors and an interval semi-absolute deviation. Journal of Computational and Applied Mathematics, 374, 112742.
29) Muganda, B. W., & Kasamani, B. S. (2023, June). Parallel programming for portfolio optimization: A robo-advisor prototype using genetic algorithms with recurrent neural networks. In 2023 International Conference on Intelligent Computing, Communication, Networking and Services (ICCNS) (pp. 167-176). IEEE.
30) Puelz, D., Carvalho, C. M., & Hahn, P. R. (2015). Optimal ETF selection for passive investing. arXiv preprint arXiv:1510.03385.
31) Rasoulzadeh, M., Edalatpanah, S. A., Fallah, M., & Najafi, S. E. (2022). A multi-objective approach based on Markowitz and DEA cross-efficiency models for the intuitionistic fuzzy portfolio selection problem. Decision Making: Applications in Management and Engineering, 5(2), 241-259.
32) Silahli, B., Dingec, K. D., Cifter, A., & Aydin, N. (2021). Portfolio value-at-risk with two-sided Weibull distribution: Evidence from cryptocurrency markets. Finance Research Letters, 38, 101425.
33) Yue, W., Wang, Y., & Xuan, H. (2019). Fuzzy multi-objective portfolio model based on semi-variance–semi-absolute deviation risk measures. Soft Computing, 23, 8159-8179.
34) Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.
35) Zhang, Y., Liu, W., & Yang, X. (2022). An automatic trading system for fuzzy portfolio optimization problem with sell orders. Expert Systems with Applications, 187, 115822.