کاربرد معادلات دیفرانسیل تصادفی در پیش بینی رفتار قیمت سهام
محورهای موضوعی : اقتصاد مالیبهروز پیری ایرانشاهی 1 , داوود جعفری سرشت 2 , علی اکبر قلی زاده 3 , سید احسان حسینی دوست 4
1 - دانشجوی دکتری، گروه اقتصاد، دانشکده اقتصاد و علوم اجتماعی، دانشگاه بوعلیسینا، همدان، ایران، behrouzpiriiranshahi@gmail.com
2 - استادیار، گروه اقتصاد، دانشکده اقتصاد و علوم اجتماعی، دانشگاه بوعلیسینا، همدان، ایران (نویسنده مسئول)، d.jafariseresht@basu.ac.ir
3 - دانشیار، گروه اقتصاد، دانشکده اقتصاد و علوم اجتماعی، دانشگاه بوعلیسینا، همدان، ایران، a.gholizadeh@basu.ac.ir
4 - استادیار، گروه اقتصاد، دانشکده اقتصاد و علوم اجتماعی، دانشگاه بوعلیسینا، همدان، ایران، hosseinidousd@basu.ac.ir
کلید واژه: معادلات دیفرانسیل تصادفی, قیمت سهام, بورس, شبیهسازی, پیشبینی, سهام بانک ملت ,
چکیده مقاله :
چکیده هدف این مقاله بررسی کارایی مدلهای معادلات دیفرانسیل تصادفی در پیشبینی قیمت سهام است. برای ارزیابی دقت این مدلها، یک مطالعه مقایسهای بین این مدلها و مدلهای سری زمانی متداول انجام شده است. در این حوزه، مدلهای حرکت براونی هندسی و هستون بررسی شده¬اند. برای این مقاله از بین نمادهای حاضر در بورس تهران به¬صورت موردی به بررسی سهام بانک ملت در نماد وبملت پرداخته شده است؛ بدین منظور مقاله روی دادههای تعدیل شده قیمت این سهام از ابتدای سال 1394 تا ابتدای سال 1402 صورت گرفته است. قبل از مدلسازی قیمت سهام و انجام پیشبینی، احتمال وجود الگوهای تکرارشونده و خودشبیه در روند حرکت قیمت سهام بررسی شده است. نتایج نشان میدهند که سهام بانک ملت دارای حافظه بلندمدت است که باعث میشود پیشبینی رفتارش تا حدودی امکان پذیر باشد. در ادامه پیشبینی قیمت سهام برای نماد وبملت انجام شده است و یافتههای تحقیق نشان میدهند که مدل دیـفـرانسـیل تصادفی هـستـون براساس اکثر معیارهای ارزیابی پــسآزمـون، عملکرد بهتری در پیشبینی قیمت سهام دارد؛ به¬طوری که این مدل تنها 64/4 صدم درصد خطای مطلق را در پیشبینیها نشان داد. مدل سری زمانی AR نیز با این فرض کلیدی که الگوهای گذشته در آینده نیز تکرار میشوند، عملکرد قابل قبولی داشته است. این فرضیه با وجود حافظه بلندمدت و پایداری در شاخص کل همخوانی دارد و باعث میشود که مدل AR بعد از مدل هستون، در جایگاه دوم معیارهای ارزیابی قرار گیرد. بنابر نتایج به¬دست آمده مدلهای معادلات دیفرانسیل تصادفی مدلهای کارآمدی برای مدلسازی و پیشبینی قیمت سهام هستند.
The aim of this research is to examine the efficiency of stochastic differential equation models in predicting stock prices. To evaluate the accuracy of these models, a comparative study has been conducted between these models and conventional time series models. In this domain, Geometric Brownian Motion and Heston models have been reviewed. For this study, the shares of Mellat Bank with the ticker symbol ‘VBMELLAT’ listed on the Tehran Stock Exchange have been examined as a case study; for this purpose, the study has been conducted on the price data of these shares from the beginning of 2015 to the beginning of 2023. Before modeling the stock, price and making predictions, the possibility of recurring patterns and self-similarity in the price movement trend has been examined. The results indicate that Mellat Bank’s shares have long-term memory, which makes it somewhat possible to predict their behavior. Subsequently, the stock price prediction for the ‘VBMELLAT’ ticker symbol has been carried out, and the research findings show that the Heston stochastic differential model, based on most post-test evaluation criteria, performs better in predicting stock prices; such that this model only showed a 0.0464 percent absolute error in predictions. The AR time series model also performed acceptably with the key assumption that past patterns will repeat in the future. This assumption is consistent with the presence of long-term memory and stability in the overall index, which places the AR model second in the evaluation criteria after the Heston model. According to the results obtained, stochastic differential equation models are efficient models for modeling and predicting stock prices.
- شفیعی، امیر، راعی، رضا، عبده تبریزی، حسین، و فلاح پور، سعید (1398). برآورد ارزش در معرض خطر با رویکرد ارزش فرین و با استفاده از معادلات دیفرانسیل تصادفی. مهندسی مالی و مدیریت اوراق بهادار (مدیریت پرتفوی)، 10(40 )، 325-348. https://sid.ir/paper/197635/fa
- دولو، مریم، و ورزیده، علیرضا (1399). پیش بینی شاخص کل بورس اوراق بهادار تهران با استفاده از مدل حرکت براونی هندسی. دانش مالی تحلیل اوراق بهادار (مطالعات مالی)، 13(46)، 208-193. https://sid.ir/paper/950997/fa
- راعی، زواره و شواخی، علیرضا (1386). بررسی عملکرد استراتژی های سرمایه گذاری در بورس اوراق بهادر تهران. تحقیقات مالی, 8(21). Doi: 20.1001.1.10248153.1385.8.21.4.8
- فرزاد ایوانی، داود جعفري سرشت، عباس افلاطونی. (1397). ارائه الگوي بهینه پیشبینی بازده سهام و انتخاب پرتفوي بر مبناي مدل ترکیبی. رساله دکتری. دانشگاه بوعلی سینا همدان.
- علیزاده چمازکتی، مسعود، فتحآبادی، مهدی، محمود زاده، محمود و قویدل، صالح.(1403). امکان یا امتناع پیشبینی قیمت سهام: شواهدی از صنعت پتروپالایش. تحقیقات مالی، 26(1)، 84-102 .
- قلی زاده, کمیاب (1394). تخصیص بهینۀ داراییها با فرض نااطمینانیهای اقتصاد کلان و تحریمهای بینالمللی علیه ایران. مجله تحقیقات اقتصادی، 50(4)، 988-959. doi:10.22059/JTE.2015.56154
- نیسی، عبدالساده، و پیمانی، مسلم (1393). مدل سازی شاخص کل بورس اوراق بهادار تهران با استفاده از معادله دیفرانسیل تصادفی هستون. پژوهشنامه اقتصادی، 14(53)، 166-143. https://sid.ir/paper/67216/fa
- مکیان، سید نظامالدین و موسوی، فاطمهالسادات (1391). پیشبینی قیمت سهام شرکت فرآوردههاي نفتی پارس با استفاده از شبکه عصبی و روش رگرسیونی، مطالعه موردي: قیمت سهام شرکت فرآوردههاي نفتی پارس. مدلسازی اقتصادی، 2 (18)، 121-105.
- اصغری، مجتبی، حقیقت، علی، نونژاد، مسعود و زارع، هاشم (1398). پویاییهای نرخ ارز در ایران با استفاده از مدلهای تعادل عمومی پویای تصادفی (DSGE). مدلسازی اقتصادی، 2 (46)، 171-192 .
Refrences
- Alizadeh Chamazkati, M., Fathabadi, M., Mahmoudzadeh, M., & Ghavidel, S. (2024). The possibility or impossibility of stock prices predicting: Evidence from the petrochemical industry. Financial Research Journal, 26(1), 84-102. (in Persian)
- Almaafi, A., Bajaba, S., & Alnori, F. (2023). Stock price prediction using ARIMA versus XGBoost models: the case of the largest telecommunication company in the Middle East. International Journal of Information Technology, 15(4), 1813-1818.
- Asghari, M., Haghighat, A., Noonzhad, M., & Zare, H. (2019). Dynamics of exchange rates in Iran using dynamic stochastic general equilibrium (DSGE) models. Economic Modeling, 2(46), 171-192. (in Persian)
- Billah, M. M., Sultana, A., Bhuiyan, F., & Kaosar, M. G. (2024). Stock price prediction: comparison of different moving average techniques using deep learning model. Neural Computing and Applications, 1-11.
- Brătian, V., Acu, A. M., Oprean-Stan, C., Dinga, E., & Ionescu, G. M. (2021). Efficient or fractal market hypothesis? A stock indexes modelling using geometric brownian motion and geometric fractional brownian motion. Mathematics, 9(22), 2983. https://doi.org/10.3390/math9222983
- Campbell, J. Y., Giglio, S., Polk, C., & Turley, R. (2018). An intertemporal CAPM with stochastic volatility. Journal of Financial Economics, 128(2), 207-233. https://doi.org/10.1016/j.jfineco.2018.02.011
- Carr, P., Itkin, A., & Muravey, D. (2022). Semi-analytical pricing of barrier options in the time-dependent Heston model. The Journal of Derivatives, 30(2), 141-171. DOI 10.3905/jod.2022.30.2.141
- Cui, Y., del Baño Rollin, S., & Germano, G. (2017). Full and fast calibration of the Heston stochastic volatility model. European Journal of Operational Research, 263(2), 625-638. https://doi.org/10.1016/j.ejor.2017.05.01
- Cui, P., Deng, Z., Hu, W., & Zhu, J. (2021). Accurate and reliable forecasting using stochastic differential equations. arXiv preprint arXiv:2103.15041.
https://doi.org/10.48550/arXiv.2103.15041
- Doulou, M., & Varzideh, A. (2020). Predicting the Tehran Stock Exchange index using the geometric Brownian motion model. Financial Knowledge of Securities Analysis (Financial Studies), 13(46), 193-208. https://sid.ir/paper/950997/fa (in Persian)
- Durrett, R. (2018). Stochastic calculus: a practical introduction. CRC press. https://doi.org/10.1201/9780203738283
- Engelmann, B., Koster, F., & Oeltz, D. (2021). Calibration of the Heston stochastic local volatility model: A finite volume scheme. International Journal of Financial Engineering, 8(01), 2050048. https://doi.org/10.1142/S2424786320500486
- Eyvani, F., Jafari Sarisht, D., & Aflatouni, A. (2018). Presenting an optimal model for stock return prediction and portfolio selection based on a composite model. Phd Thesis. University of Bu-Ali Sina (in Persian)
- Gavin, H. P. (2019). The Levenberg-Marquardt algorithm for nonlinear least squares curve-fitting problems. Department of civil and environmental engineering, Duke University, 19
- Gholizadeh, & Kamiab. (2015). Optimal asset allocation with macroeconomic uncertainties and international sanctions against Iran. Economic Research Journal, 50(4), 959-988. doi: 10.22059/JTE.2015.56154 (in Persian)
- Gruszka, J., & Szwabiński, J. (2023). Parameter estimation of the Heston volatility model with jumps in the asset prices. Econometrics, 11(2), 15. https://doi.org/10.3390/econometrics11020015
- Gulisashvili, A., Lagunas, M., Merino, R., & Vives, J. (2020). High-order approximations to call option prices in the Heston model. Journal of Computational Finance, 24(1). SSRN: https://ssrn.com/abstract=3768521
- He, X. J., & Lin, S. (2022). three-factor stochastic volatility model with regime switching. Japan Journal of Industrial and Applied Mathematics, 1-12. https://doi.org/10.1007/s13160-022-00538-7
- Hill, R. C., Griffiths, W. E., & Lim, G. C. (2018). Principles of econometrics. John Wiley & Sons. ISBN: 978-1-118-45227-1
- Huang, J. Z., & Wu, L. (2004). Specification analysis of option pricing models based on time‐changed Lévy processes. The Journal of Finance, 59(3), 1405-1439. https://doi.org/10.1111/j.1540-6261.2004.00667.x
- Makian, S. N., & Mousavi, F. (2012). Predicting the stock prices of Pars Oil Products Company using neural network and regression methods: A case study of Pars Oil Products Company stock prices. Economic Modeling, 2(18), 105-121. (in Persian)
- Matthias Büchner. (2022 Volume 143, Issue 3). A factor model for option returns. Journal of Financial Economics, Pages 1140-1161. https://doi.org/10.1016/j.jfineco.2021.12.007
- Mikosch, T. (1998). Elementary stochastic calculus with finance in view. World scientific. https://doi.org/10.1142/3856
- Mrázek, M., & Pospíšil, J. (2017). Calibration and simulation of Heston model. Open Mathematics, 15(1), 679-704. https://doi.org/10.1515/math-2017-0058
- Neisi, A., & Peymani, M. (2014). Modeling the overall index of Tehran Stock Exchange using Heston’s stochastic differential equation. Economic Research Letter, 14(53), 143-166. Retrieved from. https://sid.ir/paper/67216/fa (in Persian)
- Nguyen, N., & Islam, M. (2021). Comparison of Financial Models for Stock Price Prediction. In 2021 Joint Mathematics Meetings (JMM). AMS
- Prol, J. L. (2022). Risk-return performance of optimized ESG equity portfolios in the NYSE. Finance Research Letters, 50, 103312. https://doi.org/10.1016/j.frl.2022.103312
- Qu, P. (2020). Bank of America Stock Price Research. Journal of Financial Risk Management, 9(2), 126-140. doi: 10.4236/jfrm.2020.92007. 1.
- Raei, R., Zavareh, A. S., & Shoakhi, A. (2006). Performance evaluation of investment strategies in Tehran Stock Exchange. Financial Research, 8(21). Retrieved from 20.1001.1.10248153.1385.8.21.4.8 (in Persian)
- Rathnayaka, R. K. T., Jianguo, W., & Seneviratna, D. N. (2014, October). Geometric Brownian motion with Ito's lemma approach to evaluate market fluctuations: A case study on Colombo Stock Exchange. In 2014 International Conference on Behavioral, Economic, and Socio-Cultural Computing (BESC2014) (pp. 1-6). IEEE. DOI: 10.1109/BESC.2014.7059517
- Särkkä, S. &. (2019). Applied stochastic differential equations. (Vol. 10). Cambridge University Press. https://doi.org/10.1017/9781108186735
- Sauer, T. (n.d.). Numerical Solution of Stochastic Differential Equations in Finance. https://doi.org/10.1007/978-3-642-17254-0_1
- Shafiei, A., Raei, R., Abdoh Tabrizi, H., & Fallahpour, S. (2019). Estimation of value at risk using extreme value approach and stochastic differential equations. Financial Engineering and Portfolio Management (Portfolio Management), 10(40), 325-348. Retrieved from https://sid.ir/paper/197635/fa (in Persian)
- Shehzad, H. T., Anwar, M. A., & Razzaq, M. (2023). A Comparative Predicting Stock Prices using Heston and Geometric Brownian Motion Models. arXiv preprint arXiv:2302.07796. https://doi.org/10.48550/arXiv.2302.07796
- Sleire, A. D. (2022). Portfolio allocation under asymmetric dependence in asset returns using local Gaussian correlations. Finance Research Letters, 46, 102475. https://doi.org/10.1016/j.frl.2021.102475
- S. L. Heston, “A closed-form solution for options with stochastic volatility with applications to bond and currency options,” Review of Financial Studies, vol. 6, no. 2, pp. 327-343, 1993. https://doi.org/10.1093/rfs/6.2.327
- Smith, A., Jones, B., & Lee, C. (2022). Pricing European options under a new two-factor HESTON model with regime switching. Journal of Computational and Applied Mathematics, 4(5), 123-1451. DOI: https://doi.org/10.1007/s10614-021-10117-6
- Zhao, C., Hu, P., Liu, X., Lan, X., & Zhang, H. (2023). Stock market analysis using time series relational models for stock price prediction. Mathematics, 11(5), 1130.
- www.tsetmc.com
- www.fipiran.com