طراحی و بهینه¬سازی یک ساختار پلاسمونی تنظیم¬پذیر و پویا برای حسگر باند باریک تشخیص ضریب شکست نوری
محورهای موضوعی : مهندسی برق الکترونیک
عزیزمراد ولی نسب
1
,
علی میر
2
,
عباس حموله علی پور
3
,
وحید مهرداد
4
,
رضا طالب زاده
5
,
علی فرمانی
6
1 - دانشکده فنی مهندسي، دانشگاه لرستان، خرم آباد، ايران
2 - دانشکده فنی مهندسي، دانشگاه لرستان، خرم آباد، ايران
3 - دانشکده فنی مهندسي، دانشگاه لرستان، خرم آباد، ايران
4 - دانشکده فنی مهندسي، دانشگاه لرستان، خرم آباد، ايران
5 - دانشکده فنی مهندسي، دانشگاه لرستان، خرم آباد، ايران
6 - دانشکده فنی مهندسي، دانشگاه لرستان، خرم آباد، ايران
کلید واژه: ضریب شکست, حسگر پلاسمونی, فرامواد,
چکیده مقاله :
در این مقاله به طراحی یک حسگر پلاسمونی مبتنی بر فرامواد برای سنجش ضریب شکست مواد پرداخته شده است، که در از یک محیط تشدیدگر تشخیصی با گیرندههای مستطیلی شکل با ابعاد متفاوت و متناوب درون حلقهای برای جذب بیشتر میدان الکترومغناطیسی در قسمتهای بالا و پایین ساختار لایهای فلز-عایق-فلز استفاده شده است. ساختار با یک مد تشدیدی، منجر به یک قله تیز در طیف جذبی را پشتیبانی میکند و ضریب شایستگی 1-RIU 1321 در بسامد تشدید 35/8 گیگاهرتز را رقم میزند. تمامی مراحل شبیهسازی و بهینهسازی حسگر پیشنهادی با استفاده از نرمافزار تجاری CST Microwave studio انجام شده و تأثیر پارامترهای مختلف با تغییر در ابعاد ساختار و ضریب شکست بر روی طیف جذبی بررسی شده است. حسگر پلاسمونی پیشنهادی میتواند برای سنجش ضریب شکست و کاربردهای تشخیصی پزشکی با حساسیت فوقالعادهی nm/RIU 6400 و ضریب کیفیت بسیار بالای 7/283 مورد استفاده قرار گیرد. همچنین این ساختار از درجه بالایی از اطمینان در برابر خطاهای حین ساخت در ابعاد گیرندهها و خوردگی محیط تشخیصی برخوردار است و به همین دلیل یک نامزد بالقوه و امیدوارکننده برای کاربردهای تشخیصی و سنجش ضریب شکست مواد و کاربردهای پزشکی است.
In this research work, a plasmonic sensor based on metamaterial has been designed to measure the refractive index of materials. In this structure, a diagnostic resonator medium with rectangular receivers with different dimensions is used alternately and regularly in a ring to trap more of the field at the top and bottom of the metal-insulator-metal layered structure. The structure supports a resonant mode that leads to a sharp peak in the absorption spectrum, resulting in a sensor with a figure of merit of at a resonant wavelength of 8.35 GHz. All the steps of simulation and optimization of the proposed sensor have been done using commercial software CST Microwave studio and the effect of different parameters of changes in structure dimensions and changes in refractive indices on the absorption spectrum has been investigated. The proposed plasmonic sensor can be used to measure the refractive index and medical diagnosis with an extraordinary level of sensitivity equal to 6400 (μm/RIU) and very high-quality index (283.7). This structure has a high degree of protection against manufacturing errors in the dimensions of the receivers as well as the corrosion of the diagnostic environment and for that reason, it is a potential and promising candidate for diagnostic applications and measuring the refractive index of materials.
[1] R. Aldo, M. Mirasoli, B. Roda, F. Bonvicini, C Colliva, and P. Reschiglian, “Recent developments in rapid multiplexed bioanalytical methods for foodborne pathogenic bacteria detection,” Microchimica Acta, vol. 178, pp. 7–28, 2012. doi: 10.1007/s00604-012-0824-3.
[2] Y. Ming-jie, B. Gu, Q. An, Ch. Yang, Y. L. Guan, and K. Yong, “Recent development of fiber-optic chemical sensors and biosensors: Mechanisms, materials, micro/nano-fabrications and applications,” Coordination Chemistry Reviews, vol. 376, pp. 348-392, 2018. doi: 10.1016/j.ccr.2018.08.001.
[3] C. Cai, R. E. Miles, M. I. Cotterell, A. Marsh, G. Rovelli, A. M. Rickards, Y. Zhang, and J. P. Reid, “Comparison of methods for predicting the compositional dependence of the density and refractive index of organic–aqueous aerosols,” The Journal of Physical Chemistry A, vol. 120, no. 33, pp. 6604-6617, 2016. doi: 10.1021/acs.jpca.6b05986.
[4] I. M. Rakibul, A. N. M. Iftekher, K. R. Hasan, M. J. Nayen, S. B. Islam, A. Hossain, Z. Mustafa, and T. Tahsin, “Design and numerical analysis of a gold-coated photonic crystal fiber based refractive index sensor,” Optical and Quantum Electronics, vol. 53, no. 112, pp. 1-18, 2021. doi: 10.1007/s11082-021-02748-8.
[5] H. Zhaochen, Y. Li, B. Chen, W. Zhang, X. Yang, and X. Yang, “Recent advances in surface plasmon resonance imaging and biological applications,” Talanta, vol. 255, 124213, 2023. doi: 10.1016/j.talanta.2022.124213.
[6] Sh. Anand, U. Cvelbar, and I. Abdulhalim, “A comprehensive review on plasmonic-based biosensors used in viral diagnostics,” Communications biology, vol. 4, no. 1, pp. 70, 2021. doi: 10.1038/s42003-020-01615-8.
[7] J. W. Kyung, and K. M. Byun, “Fabrication of nanoscale plasmonic structures and their applications to photonic devices and biosensors,” Biomedical Engineering Letters, vol. 1, pp. 153-162, 2011. doi: 10.1007/s13534-011-0026-7.
[8] P. Abin, and A. R. Kumar, “The performance enhancement of surface plasmon resonance optical sensors using nanomaterials: A review,” Coordination Chemistry Reviews, vol. 458, 2022, 214424, doi: 10.1016/j.ccr.2022.214424.
[9] S. Cheon, K. D. Kihm, H. G. Kim, G. Lim, J. S. Park, and J. S. Lee, “How to reliably determine the complex refractive index (RI) of graphene by using two independent measurement constraints,” Scientific reports, vol. 4, no. 1, 2014, 6364. doi: 10.1038/srep06364.
[10] M. Heydari, A. Habibzadeh-Sharif, and F. Jabbarzadeh, “Design of a compact refractive-index sensor based on surface plasmon polariton slot waveguide,” Photonics and Nanostructures-Fundamentals and Applications, vol. 38, 2020. doi: 10.1016/j.photonics.2019.100755.
[11] R. S. Anwar, H. Ning, and L. Mao, “Recent advancements in surface plasmon polaritons-plasmonics in subwavelength structures in microwave and terahertz regimes,” Digital Communications and Networks, vol. 4, no. 4, pp. 244-257, 2018. doi: 10.1016/j.dcan.2017.08.004.
[12] D. K. Gramotnev, and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nature Photonics, vol. 8, no. 1, pp. 13-22, 2014. doi: 10.1038/nphoton.2013.232.
[13] J. Li, “A review: Development of novel fiber-optic platforms for bulk and surface refractive index sensing applications,” Sensors and Actuators Reports, vol. 2, no. 1, 2020, 100018, doi: 10.1016/j.snr.2020.100018.
[14] D. Wu, R. Li, Y. Liu, Zh. Yu, L. Yu, L. Chen, Ch. Liu, R. Ma, and H. Ye, “Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region,” Nanoscale research letters, vol. 12, pp. 1-11, 2017. doi: 10.1186/s11671-017-2203-9.
[15] E. D. Tommasi, E. Esposito, S. Romano, A. Crescitelli, V. Di Meo, V. Mocella, G. Zito, and I. Rendina, “Frontiers of light manipulation in natural, metallic, and dielectric nanostructures,” La Rivista del Nuovo Cimento, vol. 44, pp. 1-68, 2021. doi: 10.1007/s40766-021-00015-w.
[16] B. Gul, S. Ashraf, Sh. Khan, H. Nisar, and I. Ahmad, “Cell refractive index: Models, insights, applications and future perspectives,” Photodiagnosis and Photodynamic Therapy, vol, 33, 2021. doi: 10.1016/j.pdpdt.2020.102096.
[17] Y. Li, A. Ma, L. Yang, and X. Zhang, “Highly sensitive refractive index sensing with surface plasmon polariton waveguides,” Plasmonics, vol. 9, 71-78, 2014. doi: 10.1007/s11468-013-9599-6.
[18] G. A. Khan, Y. Lu, and P. Wang, “Plasmon-Enhanced Refractive Index Sensing of Biomolecules Based on Metal–Dielectric–Metal Metasurface in the Infrared Regime,” ACS omega, vol. 9, no. 1, pp. 1416-1423, 2023. doi: 10.1021/acsomega.3c07809.
[19] R. Horchani, “Refractive index sensing using a linear graded plasmonic chain of metal nano-particles,” Chinese journal of physics, vol. 56, no. 3, pp. 1247-1251, 2018. doi: 10.1016/j.cjph.2018.03.038.
[20] J. Yao, J. Ou, V. Savinov, M. K. Chen, H. Y. Kuo, N. I. Zheludev, and D. P. Tsai, “Plasmonic anapole metamaterial for refractive index sensing,” PhotoniX, vol. 3, no. 1, 2022. doi: 10.1186/s43074-022-00069-x.
[21] Y. Esfahani Monfared, “Refractive index sensor based on surface plasmon resonance excitation in a D-shaped photonic crystal fiber coated by titanium nitride,” Plasmonics, vol. 15, no. 2, pp. 535-542, 2020. doi: 10.1007/s11468-019-01072-y.
[22] Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao et al, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nature communications, vol, 4, no. 1, 2381, 2013. doi: 10.1038/ncomms3381.
[23] M. Danaie, L. Hajshahvaladi, and E. Ghaderpanah, “A single-mode tunable plasmonic sensor based on an 8-shaped resonator for cancer cell detection,” Scientific Reports, vol. 13, no. 1, 13976, 2023. doi: 10.1038/s41598-023-41193-3.
[24] H. Zhang, Y. Cheng, and F. Chen, “Quad-band plasmonic perfect absorber using all-metal nanostructure metasurface for refractive index sensing,” Optik, vol. 229, 166300, 2021. doi: 10.1016/j.ijleo.2021.166300.
[25] X. Chong, Y. Zhang, E. Li, K. Kim, P. R. Ohodnicki, Ch. Chang, and A. X. Wang, “Surface-enhanced infrared absorption: pushing the frontier for on-chip gas sensing,” ACS sensors, vol. 3, no. 1, pp. 230-238, 2018. doi: 10.1021/acssensors.7b00891.
[26] H. P. Pasanen, R. Khan, J. A. Odutola, and N. V. Tkachenko, “Transient Absorption Spectroscopy of Films: Impact of Refractive Index,” The Journal of Physical Chemistry C, vol. 128, no. 15, pp. 6167-6179, 2024. doi: 10.1021/acs.jpcc.4c00981.
[27] H. Sohrabi, A. Hemmati, M. R. Majidi, Sh. Eyvazi, A. Jahanban-Esfahan, B. Baradaran, R. Adlpour-Azar, A. Mokhtarzadeh, and M. de la Guardia, “Recent advances on portable sensing and biosensing assays applied for detection of main chemical and biological pollutant agents in water samples: A critical review,” TrAC Trends in Analytical Chemistry, vol. 143, 2021. doi: 10.1016/j.trac.2021.116344.
[28] S. Barizuddin, S. Bok, and S. Gangopadhyay, “Plasmonic sensors for disease detection-a review,” J. Nanomed. Nanotechnol, vol. 7, no. 3, 2016. doi: 10.4172/2157-7439.1000373.
[29] R. Rahad, S. Shahriar Sharar, and M. A. Haque, “Exploring the Diverse Applications of Plasmonic Refractive Index Sensors: Unveiling a New Realm of Possibilities,” A Thesis submitted in Electrical and Electronic Engineering, Islamic University of Technology, Board Bazar, Gazipur-1704, Bangladesh, Department of Electrical and Electronic Engineering, April, 2023.
[30] M. T. Sohail, M. Wang, M. Shareef, and P. Yan, “A Review of Ultrafast Photonics Enabled by Metal-Based Nanomaterials: Fabrication, Integration, Applications and Future Perspective,” Infrared Physics & Technology, 2024. doi: 10.1016/j.infrared.2024.105127.
[31] D. S. Dkhar, R. Kumari, Sh. J. Malode, N. P. Shetti, and P. Chandra, “Integrated lab-on-a-chip devices: Fabrication methodologies, transduction system for sensing purposes,” Journal of Pharmaceutical and Biomedical Analysis, vol. 223, 2023. doi: 10.1016/j.jpba.2022.115120.
[32] L. Escoubas, M. Carlberg, J. L. Rouzo, F. Pourcin, J. Ackermann, O. Margeat, C. Reynaud et al, “Design and realization of light absorbers using plasmonic nanoparticles,” Progress in Quantum Electronics, vol. 63, pp. 1-22, 2019. doi: 10.1016/j.pquantelec.2018.12.001.
[33] C. M. Das, F. Yang, Zh. Yang, X. Liu, Q. Th. Hoang, Zh. Xu, Sh. Neermunda et al, “Computational Modeling for Intelligent Surface Plasmon Resonance Sensor Design and Experimental Schemes for Real‐Time Plasmonic Biosensing: A Review,” Advanced Theory and Simulations, vol. 6, no. 9, 2023. doi: 10.1002/adts.202200886.
[34] L. De Sio, T. Placido, R. Comparelli, M. L. Curri, M. Striccoli, N. Tabiryan, and T. J. Bunning, “Next-generation thermo-plasmonic technologies and plasmonic nanoparticles in optoelectronics,” Progress in Quantum Electronics, vol. 41, pp. 23-70, 2015. doi: 10.1016/j.pquantelec.2015.03.001.
[35] M. R. Rakhshani, “Narrowband plasmonic absorber using gold nanoparticle arrays for refractive index sensing,” IEEE Sensors Journal, vol. 22, no. 5, pp. 4043-4050, 2022, doi: 10.1109/JSEN.2022.3142655.
[36] B. Špačková, P. Wrobel, M. Bocková, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proceedings of the IEEE, vol. 104, no. 12, pp. 2380-2408, 2016. doi: 10.1109/JPROC.2016.2624340.
[37] M. Chauhan, and V. K. Singh, “Fiber optic plasmonic sensors based on theoretical analysis: a review,” Optical and Quantum Electronics, vol. 53, no. 7, 2021, 409, doi: 10.1007/s11082-021-03034-3.
[38] R. Zafar, and M. Salim, “Enhanced figure of merit in Fano resonance-based plasmonic refractive index sensor,” IEEE Sensors Journal, vol. 15, no. 11, pp. 6313-6317, 2015. doi: 10.1109/JSEN.2015.2455534.
[39] Y. Chen, J. Liu, Zh. Yang, J. S. Wilkinson, and X. Zhou, “Optical biosensors based on refractometric sensing schemes: A review,” Biosensors and Bioelectronics, vol. 144, 2019. doi: 10.1016/j.bios.2019.111693.
[40] A.Farmani, S.Mohammad, HM.Mohammad, and T. Daghooghi. "Optical nanosensors for cancer and virus detections." In Nanosensors for smart cities, pp. 419-432, 2020. doi: 10.1016/B978-0-12-819870-4.00024-4.
[41] Z.Salehnezhad, S.Mohammad, and A.Farmani. "Design and numerical simulation of a sensitive plasmonic-based nanosensor utilizing MoS2 monolayer and graphene." Diamond and Related Materials 131 (2023). doi: 10.1016/j.diamond.2022.109594
[42] Y. Yuan, X. Peng, X. Weng, J. He, Ch. Liao, Y. Wang, L. Liu, Sh. Zeng, J. Song, and J. Qu, “Two-dimensional nanomaterials as enhanced surface plasmon resonance sensing platforms: Design perspectives and illustrative applications,” Biosensors and Bioelectronics, 2023. doi: 10.1016/j.bios.2023.115672.
[43] K. Sakoda, “Electromagnetic Metamaterials,” Springer: Singapore, 2019.
[44] M. Isti, I. Ahmad, M. H. K. Anik, S. Nuzhat, R. C. Talukder, S. Sultana, S. K. Biswas, and H. Talukder, “Highly sensitive double D-shaped channel photonic crystal fiber based plasmonic refractive index sensor,” Optics Continuum, vol. 1, no. 3, pp. 575-590, 2022. doi: 10.1364/OPTCON.452020.
[45] N. Hussain, M. R. Masuk, M. F. Hossain, and A. Z. Kouzani, “Dual core photonic crystal fiber based plasmonic refractive index sensor with ultra-wide detection range,” Optics Express, vol. 31, no. 16, pp. 26910-26922, 2023. doi: 10.1364/OE.487600.
[46] E. Haque, S. Mahmuda, M. A. Hossain, N. H. Hai, Y. Namihira, and F. Ahmed, “Highly sensitive dual-core PCF based plasmonic refractive index sensor for low refractive index detection,” IEEE photonics journal, vol. 11, no. 5, pp. 1-9, 2019. doi: 10.1109/JPHOT.2019.2931713.
[47] M. H. K. Anik, M. A. Isti, S. R. Islam, S. Mahmud, H. Talukder, M. J. Piran, S. K. Biswas, and K Kwak, “Milled microchannel-assisted open D-channel photonic crystal fiber plasmonic biosensor,” IEEE Access, vol. 9, pp. 2924-2933, 2020. doi: 10.1109/ACCESS.2020.3047509.
[48] M. A. Butt, S. N. Khonina, and N. L. Kazanskiy, “Plasmonic refractive index sensor based on metal–insulator-metal waveguides with high sensitivity,” Journal of Modern Optics, vol. 66, no. 9, pp. 1038-1043, 2019. doi: 10.1080/09500340.2019.1601272.
[49] N. L. Kazanskiy, M. A. Butt, and S. N. Khonina, “Nanodots decorated MIM semi-ring resonator cavity for biochemical sensing applications,” Photonics and Nanostructures-Fundamentals and Applications, vol. 42, 2020, 100836. doi: 10.1016/j.photonics.2020.100836.
[50] E. Haque, M. A. Hossain, Y. Namihira, and F. Ahmed, “Microchannel-based plasmonic refractive index sensor for low refractive index detection,” Applied optics, vol. 58, no. 6, pp. 1547-1554, 2019. doi: 10.1364/AO.58.001547.