پیشبینی موجودی انبار مبتنی بر هوش مصنوعی
محورهای موضوعی : مدیریتحمیدرضا حاجعلی 1 , محمد علی افشار کاظمی 2 , عادل آذر 3 , عباس طلوعی اشلقی 4 , رضا رادفر 5
1 - دانشجودکتری گروه مدیریت صنعتی، دانشکده مدیریت و اقتصاد، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - استادگروه مدیریت صنعتی، واحد تهران مركزي، دانشگاه آزاد اسلامی، تهران، ایران
3 - استادگروه مدیریت صنعتی، دانشکده مدیریت و اقتصاد، دانشگاه تربیت مدرس، تهران، ایران
4 - استادگروه مدیریت صنعتی، دانشکده مدیریت و اقتصاد، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
5 - استادگروه مدیریت صنعتی، دانشکده مدیریت و اقتصاد، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: کنترل موجودی, کلان داده, هوش مصنوعی, یادگیری عمیق, زنجیره تامین,
چکیده مقاله :
توسعه هوش مصنوعی در حوزه های گسترده صنعتی وبازرگانی ازیک سو ، افزایش حجم چشم گیر داده های غیر خطی تولید شده توسط واحد های مختلف سازمان ها ازسوی دیگر، نیاز به استفاده از تکنیک های هوش مصنوعی در مدیریت موجودی (IM) را افزوده است. از این رو مدل راهبردی طراحی شده در این مقاله با هدف بهره برداری از روش های یادگیری عمیق حافظه بلند مدت (RNN) و نیز شبکه عصبی حافظه کوتاه مدت طولانی دو جهته (BILSTM) مبتنی بر بکارگیری از روش های متداول کنترل موجودی مانند مقدار اقتصادی سفارش(EOQ ) ومدل مقدار اقتصادی تولید(EPQ ) واستفاده از امکانات تحلیل ABC جهت بالا بردن اثر بخشی مدل پرداخته است. دستاورد این مقاله رسیدن به مدل راهبردی منحصربه فردی، حاصل از ادغام چارچوب های سنتی کنترل موجودی و هوش مصنوعی می باشد ،که دارای عملکرد بالایی به لحاظ سرعت و دقت پیش بینی است. علارقم اینکه یافته ها نشان داد،شبکه عصبی بازگشتی RNN با دقت 85 درصد نتایج مطلوبی را حاصل نکرده است . استفاده از رویکرد ترکیبی شبکه عصبی BILSTM بعد از ساخت وآموزش این شبکه باپارامترهای درنظر گرفته شده در راستای هدف مقاله، دقت 93 درصد را تبیین نموده است.
Development of artificial intelligence in broad industrial and commercial fields, and significant increasing of non-linear data which produced by various units of organizations, on the other hand, would be necessary for using artificial intelligence (IA) in inventory management (IM).That's why the strategic model recommended in this article aims to use deep learning methods of long-term memory (RNN) and bidirectional long-term short-term memory (BILSTM) neural network based on regular inventory control methods such as the economic value of the order( EOQ) and the economic production quantity model (EPQ) also use of ABC analysis which facilities would increase effectiveness of model. The achievement of this article is reach a unique strategic model, by integration of traditional inventory control methods and artificial intelligence, which has high efficiency in terms of speed and accuracy of forecasting. However the findings have been showed that the recurrent neural network(RNN) with an accuracy of 85% did not acceptable and combined approach of the (BILSTM) neural network, after building and training by considered parameters in line with the purpose of the article, has explained the accuracy of 93%.
-رضایی، حامد؛ علیاحمدي، علیرضا؛ امینی، محمدتقی؛ رحمانی، زینالعابدین (1397 .(ارائه الگوي ارزیابی عملکرد زنجیره تأمین با بهرهگیري از مدل کارت امتیازي متوازن در یکی از سازمانهاي خرید نظامی. فصلنامه علمی-پژوهشی مدیریت منابع در نیروي انتظامی، دوره 6 ،شماره 4 ،صص 35-58
-آقایی، اصغر؛ صالحی صدقیانی، جمشید؛ قربانیزاده، وجه ا...؛ میکائیلی، فتاح؛ آقایی، میلاد (1393 .( الگوي زنجیره تأمین چابک ناجا. فصلنامه علمی-پژوهشی مدیریت منابع در نیروي انتظامی، دوره 2 ، شماره 2 ،صص 51-72
-مولوی خایانی، امیر(1397). کلان داده ها معماری و کاربرد ها. نشر موسسه فرهنگی هنری دیباگران تهران.
-آذر، ع. علی محمدلو، م. (۱۳۸۶). طراحی مدل ریاضی مدیریت موجودی در زنجیره تأمین. مجله مدرس. دوره ۱ .شماره ۳.
W. Liao, G. Ye, Y. Yin, W. Yan, Y. Ma and D. Zuo, "The Inventory of Spare PartsPrediction based on LSTM for Large Data and a Short Replacement Cycle," 2020 IEEE/ACS 17th International Conference on Computer Systems
and Applications (AICCSA), Antalya, Turkey, 2020, pp. 1-5,. Zhang, G. P. (2003). Time series forecasting using a hybrid arima and neural network model. Neurocomputing, 50, 159–175.
Real Carbonneau, Kevin Laframboise, Rustam Vahidov Application of machine learning techniques for supply chain demand forecasting; European Journal of Operational Research Volume 184, Issue3;Pages 1140-1154, 2008
Maqsood, H., Mehmood, I., Maqsood, M., Yasir, M., Afzal, S., Aadil, F., Selim, M. M., & Muhammad, K. (2003). A local and global event sentiment based efficient stock.
Haider Maqsood, Irfan Mehmood, Muazzam Maqsood, Muhammad Yasir, Sitara Afzal, Farhan Aadil, Mahmoud Mohamed Selim, Khan Muhammad A local and global event sentiment based efficient stock exchange forecasting using deep learning,International Journal of Information Management Volume 50,2020,Pages 432-451.
Yang, R., Yu, L., Zhao, Y., Yu, H., Xu, G., Wu, Y., & Liu, Z. (2020). Big data analytics for financial market volatility forecast based on support vector machine. International Journal of Information Management, 50, 452–462.
Ellefsen, A. L., Bjørlykhaug, E., Æsøy, V., Ushakov, S., & Zhang, H. (2019). Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture. Reliability Engineering & System Safety, 183, 240–251.
Deng, K., Zhang, X., Cheng, Y., Zheng, Z., Jiang, F., Liu, W., & Peng, J A remaining useful life prediction method with long-short term feature processing for aircraft engines. Applied Soft Computing, 106344. . (2020).
Siami-Namini, S., Tavakoli, N., & Namin, A. S. (2018). A comparison of arima and LSTM inforecasting time series. 2018 17th IEEE international conference on machine learning and applications (ICMLA), 1394–1401.
Lim, B., & Zohren, S. (2020). Time series forecasting with deep learning: A survey. arXiv preprint
arXiv:2004.13408. Xia, T., Song, Y., Zheng, Y., Pan, E., & Xi, L. (2020). An ensemble framework based on convolutional bi-directional LSTM with multiple time windows for remaining useful life estimation. Computers in Industry, 115, 103182.
Villegas, M. A., & Pedregal, D. J. (2018). Supply chain decision support systems based on a novel hierarchical forecasting approach. Decision Support Systems, 114, 29–36.
Chandriah, K.K., Naraganahalli, R.V. RNN / LSTM with modified Adam optimizer in deep learning approach for automobile spare parts demand forecasting. Multimed Tools Appl 80, 26145–26159 (2021). https://doi.org/10.1007/s11042-021-10913-0
A. Sherstinsky, Fundamentals of Recurrent Neural Network (RNN) and
Long Short-Term Memory (LSTM) network, Physica D (2020) Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term memory. Neural computation, 9(8):1735–1780, 1997. Alex Sherstinsky. Fundamentals of Recurrent Neural Network (RNN) and Long Short-TermMemory (LSTM) Network,2018. cite arxiv:1808.03314Comment: 39 pages, 10 figures, 66 references.
Guna sekaran, A., Papadopoulos, T., Dubey, R., Wamba, S.F., Childe, S.J., Hazen, B., Akter, S., 2017. Big data and predictive analytics for supply chain and organizational performance.J. Bus. Res. 70, 308–317. http://dx.doi.org/10.1016/j.jbusres.2016.08.004.
Weng T., Liu W., Xiao J. Supply chain sales forecasting based on lightGBM and LSTM combination model
Industrial Management and Data Systems, 120 (2019), pp. 265-279. Noble, M.A. (1997). "Manufacturing competitive priorities and productivity:an empirical study" Operations & Production Management, Vol. 17, No.1.
-Abbasi, R., Sedaghati, H. R., & Shafiei, S. (2022). Proposing an Economic Order Quantity (EOQ) model for imperfect quality growing goods with stochastic demand. Research in Production and Operations Management, 13(1), 105-127. doi: 10.22108/jpom.2022.127914.1356.
Mandal, S. (2012). “An empirical investigation into supply chain resilience”, The IUP Journal of Supply Chain Management, Vol. 9 No. 4, pp. 46–61.
Naddor E (1966) Inventory systems. Wiley, New York Vrat, P. (2014). Basic Concepts in Inventory Management. In: Materials Management. Springer Texts in Business and Economics. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1970-5_2
Haofang Feng, Sheng Hao Zhang, Yong Zhang, 2023.Managing production-inventory-maintenance systems with condition monitoring,European Journal of Operational Research,Volume 310, Issue 2,2023,Pages 698-711,ISSN 0377-2217,https://doi.org/10.1016/j.ejor.2023.03.043.
Mehdizadeh M (2020) Integrating ABC analysis and rough set theory to control the inventories of distributor in the supply chain of auto spare parts. Comput Ind Eng 139:105673
Mitchell A. Millstein, Liu Yang, Haitao Li,Optimizing ABC inventory grouping decisions,International Journal of Production Economics,Volume 148,2014,Pages 71-80
, Y. Chen, K. W. Li and S. -f. Liu, "A comparative study on multicriteria ABC analysis in inventory management," 2008 IEEE International Conference on Systems, Man and Cybernetics, Singapore, 2008, pp. 3280-3285, doi: 10.1109/ICSMC.2008.4811802.
Jian Li, Shouyang Wang, T.C. Edwin Cheng,Analysis of postponement strategy by EPQ-based models with planned backorders,Omega,Volume 36, Issue 5,2008,Pages 777-788.
Leopoldo Eduardo Cárdenas-Barrón,The derivation of EOQ/EPQ inventory models with two backorders costs using analytic geometry and algebra,Applied Mathematical Modelling,Volume35,Issue5,2011,Pages2394-2407,ISSN0307-904X
Glock, C.H., Jaber, M.Y. and Searcy, C. (2012), "Sustainability strategies in an EPQ model with price‐ and quality‐sensitive demand", The International Journal of Logistics Management, Vol. 23 No. 3, pp. 340-359. https://doi.org/10.1108/09574091211289219
Yuqing Peng, Xuan Liu, Weihua Wang, Xiaosong Zhao, Ming Wei,Image caption model of double LSTM with scene factors,Image and Vision Computing,Volume 86,2019,Pages 38-44,ISSN 0262-8856