بررسی اثر تنش خشکی بر عملکرد و اجزای عملکرد و محتوی یون ها درگیاه جو بدون پوشینه (Hordeum sativum L.)
محورهای موضوعی : بوم شناسی گیاهان زراعیعلیرضا باقری 1 , حسین حیدری شریف آباد 2
1 - دانشجوی دکتری رشته زراعت واحد علوم و تحقیقات تهران، عضو هیات علمی واحد اقلید
2 - عضو هیات علمی موسسه تحقیقات ثبت و گواهی بذر و نهال کرج
کلید واژه: عملکرد, تنش خشکی, ژنوتیپ, جو بدون پوشینه,
چکیده مقاله :
در بیشتر مناطق ایران رشد و عملکرد غلات به دلیل خشکی کاهش پیدا می کند. یکی از گیاهان مناسب برای چنین شرایطی گیاه جو معمولی و بدون پوشینه است. چهار ژنوتیپ جو بدون پوشینه (UH3، U46M، EHM81-12 و CM67) در ایستگاه تحقیقات دانشگاه آزاد اسلامی واحد اقلید به مدت دو سال (1384 و 1383) در دو آزمایش جداگانه برای بررسی میزان تحمل آن ها به خشکی مورد بررسی قرار گرفتند در آزمایش تنش خشکی چهار تیمار شامل آبیاری پس از رسیدن پتانسیل آب خاک به bar5/0-(شاهد)، آبیاری پس پتانسیل 5/1- بار ، 3- و 5- بار به کار برده شدند . تیمارهای آزمایش به صورت اسپلیت پلات با طرح پایه بلوک های کامل تصادفی در سه تکرار اعمال شدند. تیمارهای خشکی در کرت های اصلی و ارقام در کرت های فرعی قرار گرفتند . فاکتورهای مورد اندازه گیری عبارت بودند از عملکرد، اجزای عملکرد و محتوی یونی ساقه. نتایج آزمایش نشان داد که تعداد دانه و سنبله درگیاه کاهش معنی داری در شرایط تنش داشتند و وزن دانه و حساسیت کمتری داشت. عملکرد دانه و بیولوژیک نیز در شرایط تنش کاهش نشان دادند و دربین ژنوتیپ ها رقم UH3 کمترین و رقم GM67 بیشترین مقدار عملکرد دانه و بیولوژیک را نشان دادند. تفاوت مقدار عملکرد بیولوژیک به تعداد پنجه و سنبله در گیاه و کاهش سطح برگ و ارتفاع مرتبط بود. کاهش عملکرد دانه به تعداد سنبله کمتر در گیاه و تعداد دانه در سنبله کمتر ربط داشت. پروتئین دانه در شرایط تنش خشکی افزایش یافت. تنش، میزان سدیم و کلر برگ را افزایش داد ولی مقدار NO3، NH4، Ca،P ،K وMg کاهش یافت. درکل رقمUH3 کمترین و رقم CM67 بیشترین مقدار عملکرد را داشتند.
Drought cause yield loses in cereals in most regions Iran. Barley and hull-less barley are the most suitable cereal crops for such situation. Four hull-less barley genotypes (UH3, U46M, EHM81-12 and CM67) were grown in research station of Eqlid azad university in two different experiments for drought stress study in, 2005- 2006 .In drought based study, four irrigation methods including irrigating after the reaching soil water potential to -0.5, bar (control), 1.5 bar, -3 and -5 bar were used.The experimental design was split plot based on randomized complete block design with three replications in which the drought treatments were arranged in main plots and genotypes in subplots.The determined parameters were yield, it's components and ion content in shoots.The results revealed that the number of spike and grain per plot were reduced significantly by stress and grain weight was less sensitive to that.The biological and grain yields were decreased by stress. Among the genotypes, UH3 and CM67 had the lowest and highest grain and biological yield, respectively. The biological yield differences was related to low plant height, leaves and area tillers and the grain yield differences were caused by reduction in ear per plant and grain per ear.The grain protein content was influenced by drought stress. Drought stress decreased ion content except Na and Cl. The LAR value was first decreased by stress treatments but showed an increase at high stress levels. In general, UH3 genotype showed lowest yield and yield components, stress tolerance index, photosynthesis, growth and ion content and CM67 was vise versa.
1- الیاس آذر، خ. 1375. خاک شناسی عمومی و خصوصی. انتشارات جهاد دانشگاهی ارومیه. 396 صفحه.
2- Ali, A., T. C. Tucker, T. L. Thompson, and M. Salim. 2001. Effect of salinity and mixed ammonium and nitrate nutrition on the growth and nitrogen utilization of barley. J. Agron. and Crop Sci. 186:233-228.
3- Alpaslan, M. A. Cunes, and S. Taban. 1999. Salinity resistance of certain rice ( Oryza sativa L.) cultivars. Turkish J. of Botany. 23:499-506.
4- Amtmann. A., and D. Sanders. 1999. Mechanisms of Na- uptake by plant cell. Adv. Bot. Res. 29: 75-112.
5- Asana, R. O., and R. F. Williams. 1965. The effect of temperature stress on grain development in wheat. Aust. J. Agric. Sci. 16:1-13.
6- Asch, D. M., K. Dorffling, and K.Miezan. 2000. Leaf K/Na ratio predicts salinity induced yield loss in irrigated rice. Euphytica. 113: 109-118.
7- Ashraf, M., and A. Waheed. 1993. Screening of local exotic accessions of lentil (Lens culinaris Medic.) for salt tolerance at two growth stages.
8- Basu, M. S., and P.C. Nautiyal. 2004. Improving water use efficiency and drought tolerance in groundnut by trait based breeding programs in India. Indian farming. 54:24-27.
9- Bremner, J. M., and C. S. Mulvaney. 1982. Nitrogen – total. In: A. L. Page., R.H. Miller, and O. R. Keeney (eds): Methods of Soil analysis, Part 2. Ned. Edn. Agron. Monogr.9. pp 595 – 624. ASA and SSSA, Madison.
10- Campbell, C. A., F. Selles, R. P. Zentner, B. G. McConkey, R. C. Mckenzie, and S. A. Drandt. 1997. Factors influencing grain N Concentration of hard red spring wheat in the semiarid prairie. Can. J. Plant Sci. 77:53-61.
11- Clarke, J. M., C. A. Campbell, H. W. Cutforth, R. M. Depauw, and G. E. Winkleman. 1990. Nitrogen and phosphorus uptake, translocation and utilization efficiency of wheat in relation to environment and cultivar yield and protein levels. Can. J. Plant Sci. 70:965-977.
12- Cramer, G. R., E. Epstein, and A. Lauchli. 1991. Effect of sodium, potassium and calcium on salt – stressed barley. II. Element analysis. Physiol. Planta. 81:187-292.
13- Cramer, G. R., G. J. Alberico, and C. Schmidt. 1994. Salt tolerance is not associated with the sodium accumulation of two maize hybrids. Aust. J. Plant Physiol. 21: 675-692.
14- Cuin, T. A., A. J. Miller, and R. A. Leigh. 2003. Potassium activities in cell compartments of salt -grown barley leaves. J. Exp. Bot. 54: 657-661.
15- Demiral, M. A., M. Aydin, and A. Yorulmaz. 2005. Effect of salinity on growth, chemical composition and antioxidative enzyme activity of two malting barley (Hordeum vulgare L.) cultivars. Turk. J. Biol. 29:117-123.
16-El-Sayed, A. A. 2002. Improvement of food hull - less barley in Egypt. Paper presented in the food earley workshop organization by ICARDA and FAO, 14-17 January 2002. Hammamet, D. Tunisia (in press).
17- Eugene, V. M., M. L. Scott, E. Leland, and M. G. Catherine. 1994. Tiller development in salt-stressed wheat. Crop Sci. 34: 1594-1603.
18- Evans, L. T., L. F. Wardlaw, and R. A. Fischer.1975. The pattern of grain set within ears of wheat. Aust. J. Biol. Sci. 25:1-8.
19- Heuer, B., and Z. Plaut. 1989. Photosynthesis and osmotic adjustment of two sugar beet cultivars grown under saline conditions. J. Exp. Bot. 40:437-440.
20- Holtekjolen, A. K, C. Kinits, and S. H. Knutsent. 2006. Flavonal and bound phenolic acid content in different barley varieties J. Agric. Food Chem. 54:2253-2260.
21- Ibrahim, A. H. 1999. Control of growth of sorghum plants grown under stress conditions.Ph.D Thesis Fac. Sci. , Mansura Univ. Egypt.
22- Islam, T. M., R. H. Sedgley. 1981. Evidence for a uniculm effect in spring wheat (Triricwn aestitivum L.) in a mediterranean environment. Euphytica. 30: 277-282.
23- Jones, H. G. 1992. Plants and Microclimate. A Quantities Approach to Environmental Plant Physiology, 2nd edn. Cambridge Univ. Press, Cambridge.
24-Kirby, E. M. 1988. Analysis of leaf, stem and ear growth in wheat from terminal spikelet stage to anthesis. Field Crop Res. 18: 127-140.
25- Leidi, F. O., J. F. Saiz. 1997. Is salinity tolerance related to Na accumulation in upland cotton (Gossympium hirsutum L.) seedlings. J. Plant and Soil. 190: 67-75.
26- Ludlow, M. M., F. J. Santamaria, and S. Fukai. 1990. Contribution of osmotic adjustment to grain yield of Sorghum biocolor L. Moench under water limited conditions. I. Water stress after anthesis. Aust. J. Agric. Res. 41:67-78.
27- Mass, E. V., and J. A. Poss. 1989. Salt sensitivity of cowpea at various growth stages. Irri. Sci. 10: 313-320.
28- Munns. R. 2003. Physiological processes limiting plant growth in saline soil: some dogmas and hypotheses. Plant Cell Environ. 16:15-24.
29- Munns, R., R.A. Hare., R. A. James, and G. J. Rebetzke,. 2000. Genetic variation for improving the salt tolerance of durum wheat. Aust. J. Agric. Res. 51: 69-74.
30- Nicolas, M. E., R. Munns, A. B. Samarakoon, and R.M. Gifford. 1994. Elevated CO2 improves the growth of wheat under salinity. Aust. J. Plant Physiol. 20: 349-360.
31- Rashid, A., R. H. Qureshi, P. A. Hollington, and R. G. Cogn Jones. 1999. Comparative responses of wheat (Triticum aestivum L.) cultivars to salinity at the seedling stage, J. Agron and crop Sci. 182:199-207.
32- Regnel, Z. 1992. The role of calcium in salt toxicity. Plant Cell Environ. 15: 625-632.
33- Savin, R., P. J. Stone , and M. E. Nicolas. 1996. Responses of grain growth and malting quality of barley to short period of high temperature in field studies using portable chamber. 47:465-477.
34- Sheldarke, A. R., and N. P. Saxena, 1979. Growth and development of chickpeas under progressive moisture stress. Pages 63-483 in stress physiology of crop plants. (Massell, H., and R. C. Staples) New York, USA. Willey.
35- Schelling, K., K. Born, C. Weissteiner, and W. Kuhbauch. 2003. Relationships between yield and quality parameters of malting barley (Hordeum vulgare L.) and phenological and meteorological data. J. Agron. and Crop Sci.189:113-122.
36- Sieling, K., O. Christen, H. Richter–Harder, and H. Hanus. 1994. Effects of temporary water stress after anthesis on grain yield and yield components in different tiller categories of two spring wheat varieties. J. Agron. and crop Sci. 173:32-40.
37- Taize, L., and E. Zeiger. 2006. Plant physiology. Sinauer associated Inc.4th Edn. p690.
38- Wrigley, C.W. 1994. Developing better strategies to improve grain quality for wheat. Anst. J. Agric. Res. 52: 60-70.
39- Zadoks, J, C. 1983. An integrated disease and pest – managment scheme, EMPIRE, for Wheat. CIBA Foundation Symposium. 97:116-129.
40- Zeng, L., and M. C. Shannon. 2000. Effects of salinity on grain yield and yield components of rice at different seedling densities. Agron. J. 192: 418-423.
41- Zhu, G. Y., J. M. Kinett, and S. Lutts. 2001. Characterizations of rice (Oryza sativa L.) F3
_||_